19 resultados para pulse-width modulator

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sub-nanosecond bipolar high voltage pulses are a very important tool for food processing, medical treatment, waste water and exhaust gas processing. A Hybrid Modulator for sub-microsecond bipolar pulse generation, comprising an unipolar solid-state Marx generator connected to a load through a stack Blumlein system that produces bipolar pulses and further multiplies the pulse voltage amplitude, is presented. Experimental results from an assembled prototype show the generation of 1000 V amplitude bipolar pulses with 100 ns of pulse width and 1 kHz repetition rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The operation of generalized Marx-type solid-state bipolar modulators is discussed and compared with simplified Marx-derived circuits, to evaluate their capability to deal with various load conditions. A comparative analysis on the number of switches per cell, fiber optic trigger count, losses, and switch hold-off voltages has been made. A circuit topology is obtained as a compromise in terms of operating performance, trigger simplicity, and switching losses. A five-stage laboratory prototype of this circuit has been assembled using 1200 V insulated gate bipolar transistors (IGBTs) and diodes, operating with 1000 V dc input voltage and 1 kHz frequency, giving 5 kV bipolar pulses, with 2.5 mu s pulse width and 5 mu s relaxation time into resistive, capacitive, and inductive loads.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Additional apple juice extraction with pulsed electric field pretreated apple cubes towards control samples is evaluated. Monopolar and bipolar shaped pulses are compared and their effect is studied with variation of electric field, pulse width and number of pulses. Variation of electric field strength is ranged from 100 V/cm to 1300 V/cm, pulse width from 20 mu s to 300 mu s and number of pulses from 10 to 200, at frequency of 200Hz. Two pulse trains separated by 1 second are applied to all samples. Bipolar pulses showed higher apple juice yields with all studied parameters. Calculation of specific energies consumed was assessed and a threshold where higher energy inputs do not increase juice yield is found for a number of used parameters. Qualitative parameters of total soluble matter (Brix) and absorbance at 390 nm wavelength were determined for each sample and results show that no substantial differences are found for PEF pre-treated and control samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a systemic modeling for a PV system integrated into an electric grid. The modeling includes models for a DC-DC boost converter and a DC-AC two-level inverter. Classical or fuzzy PI controllers with pulse width modulation by space vector modulation associated with sliding mode control is used for controlling the PV system and power factor control is introduced at the output of the system. Comprehensive performance simulation studies are carried out with the modeling of the DC-DC boost converter followed by a two-level power inverter in order to compare the performance with the experimental results obtained during in situ operation with three commercial inverters. Also, studies are carried out to assess the quality of the energy injected into the electric grid in terms of harmonic distortion. Finally, conclusions regarding the integration of the PV system into the electric grid are presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is about a PV system connected to the electric grid by power electronic converters, using classical PI controller. The modelling for the converters emulates the association of a DC-DC boost with a two-level power inverter (TwLI) or three-level power inverter (ThLI) in order to follow the performance of a testing experimental system. Pulse width modulation (PWMo) by sliding mode control (SMCo) associated with space vector modulation (SVMo) is applied to the boost and the inverter. The PV system is described by the five parameters equivalent circuit. Parameter identification and simulation studies are performed for comparison with the testing experimental system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Eletrotécnica Ramo de Automação e Eletrónica Industrial

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A newly developed solid-state repetitive high-voltage (HV) pulse modulator topology created from the mature concept of the d.c. voltage multiplier (VM) is described. The proposed circuit is based in a voltage multiplier type circuit, where a number of d.c. capacitors share a common connection with different voltage rating in each one. Hence, besides the standard VM rectifier and coupling diodes, two solid-state on/off switches are used, in each stage, to switch from the typical charging VM mode to a pulse mode with the d.c. capacitors connected in series with the load. Due to the on/off semiconductor configuration, in half-bridge structures, the maximum voltage blocked by each one is the d.c. capacitor voltage in each stage. A 2 kV prototype is described and the results are compared with PSPICE simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a multifunctional architecture to implement field-programmable gate array (FPGA) controllers for power converters and presents a prototype for a pulsed power generator based on a solid-state Marx topology. The massively parallel nature of reconfigurable hardware platforms provides very high processing power and fast response times allowing the implementation of many subsystems in the same device. The prototype includes the controller, a failure detection system, an interface with a safety/emergency subsystem, a graphical user interface, and a virtual oscilloscope to visualize the generated pulse waveforms, using a single FPGA. The proposed architecture employs a modular design that can be easily adapted to other power converter topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensive use of semiconductor devices enabled the development of a repetitive high-voltage pulse-generator topology from the dc voltage-multiplier (VM) concept. The proposed circuit is based on an odd VM-type circuit, where a number of dc capacitors share a common connection with different voltage ratings in each one, and the output voltage comes from a single capacitor. Standard VM rectifier and coupling diodes are used for charging the energy-storing capacitors, from an ac power supply, and two additional on/off semiconductors in each stage, to switch from the typical charging VM mode to a pulse mode with the dc energy-storing capacitors connected in series with the load. Results from a 2-kV experimental prototype with three stages, delivering a 10-mu s pulse with a 5-kHz repetition rate into a resistive load, are discussed. Additionally, the proposed circuit is compared against the solid-state Marx generator topology for the same peak input and output voltages.