9 resultados para exploratory data analysis
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this paper we present a methodology which enables the graphical representation, in a bi-dimensional Euclidean space, of atmospheric pollutants emissions in European countries. This approach relies on the use of Multidimensional Unfolding (MDU), an exploratory multivariate data analysis technique. This technique illustrates both the relationships between the emitted gases and the gases and their geographical origins. The main contribution of this work concerns the evaluation of MDU solutions. We use simulated data to define thresholds for the model fitting measures, allowing the MDU output quality evaluation. The quality assessment of the model adjustment is thus carried out as a step before interpretation of the gas types and geographical origins results. The MDU maps analysis generates useful insights, with an immediate substantive result and enables the formulation of hypotheses for further analysis and modeling.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Matemática na Educação Pré-Escolar e nos 1º e 2º Ciclos do Ensino Básico
Resumo:
Mestrado em Contabilidade
Resumo:
Mestrado em Segurança e Higiene do Trabalho.
Resumo:
Dissertação apresentada para obtenção do grau de Mestre em Educação Matemática na Educação Pré-Escolar e nos 1º e 2º Ciclos do Ensino Básico na especialidade de Didática da Matemática
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para a obtenção de grau de mestre em Ciências da Educação, Especialização em Intervenção Precoce
Resumo:
Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.
Resumo:
Relatório Final apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico