38 resultados para double perovskite spin polarization point contact spectrocopy
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
Chromium oxides, CrxOy, are of great interest due to the wide variety of their technological applications. Among them, CrO2 has been extensively investigated in recent years because it is an attractive compound for use in spintronic heterostructures. However, its synthesis at low temperatures has been a difficult task due to the metastable nature of this oxide. This is indeed essential to ensure interface quality and the ability to coat thermal-sensitive materials such as those envisaged in spintronic devices. Pulsed Laser Deposition (PLD) is a technique that has the potential to meet the requirements stated above. In this work, we describe our efforts to grow chromium oxide thin films by PLD from Cr8O21 targets, using a KrF excimer laser. The as-deposited films were investigated by X-ray diffraction and Rutherford backscattering spectrometry. Structural and chemical composition studies showed that the films consist of a mixture of amorphous chromium oxides exhibiting different stoichiometries depending on the processing parameters, where nanocrystals of mainly Cr2O3 are dispersed. The analyses do not exclude the possibility of co-deposition of Cr2O3 and a low fraction of CrO2.
Resumo:
This work reports on the synthesis of chromium oxide thin films prepared by photodissociation of Cr(CO)(6) in an oxidizing atmosphere, using a pulsed UV laser (KrF, lambda = 248 nm). The experimental conditions, which should enable the synthesis of CrO2, are discussed and results on the deposition of CrxOy films on Al2O3 (0001) substrates are presented.
Resumo:
This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by the photodissociation of Cr(CO)(6) in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio Of O-2 to Cr(CO)(6) and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both the crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm(-2) and a partial pressure ratio of about 1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Here, we use Andreev reflection spectroscopy to study the spin polarization of high quality CrO2 films. We study the spin polarization as a function of growth temperature, resulting in grain size and electrical resistivity. In these films low temperature growth appears to be a necessary but not sufficient condition to guarantee the observation of high spin polarization, and this is only observed in conjunction with suppressed superconducting gap values and anomalously low interface properties. We suggest that this combination of observations is a manifestation of the long range spin triplet proximity effect. (C) 2007 American Institute of Physics.
Resumo:
The deposition of highly oriented a-axis CrO(2) films onto Al(2)O(3)(0001) by atmospheric pressure (AP)CVD at temperatures as low as 330 C is reported. Deposition rates strongly depend on the substrate temperature, whereas for film surface microstructures the dependence is mainly on film thickness. For the experimental conditions used in this work, CrO(2) growth kinetics are dominated by a surface reaction mechanism with an apparent activation energy of (121.0 +/- 4.3) kJ mol(-1). The magnitude and temperature dependence of the saturation magnetization, up to room temperature, is consistent with bulk measurements.
Resumo:
This work reports on the synthesis of CrO2 thin films by atmospheric pressure CVD using chromium trioxide (CrO3) and oxygen. Highly oriented (100) CrO2 films containing highly oriented (0001) Cr2O3 were grown onto Al2O3(0001) substrates. Films display a sharp magnetic transition at 375 K and a saturation magnetization of 1.92 mu(B)/f.u., close to the bulk value of 2 mu(B)/f.u. for the CrO2.
Resumo:
Laser-assisted chemical vapour deposition (LCVD) has been extensively studied in the last two decades. A vast range of applications encompass various areas such as microelectronics, micromechanics, microelectromechanics and integrated optics, and a variety of metals, semiconductors and insulators have been grown by LCVD. In this article, we review briefly the LCVD process and present two case studies of thin film deposition related to laser thermal excitation (e.g., boron carbide) and non-thermal excitation (e.g., CrO(2)) of the gas phase.
Resumo:
This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Resumo:
In the Sparse Point Representation (SPR) method the principle is to retain the function data indicated by significant interpolatory wavelet coefficients, which are defined as interpolation errors by means of an interpolating subdivision scheme. Typically, a SPR grid is coarse in smooth regions, and refined close to irregularities. Furthermore, the computation of partial derivatives of a function from the information of its SPR content is performed in two steps. The first one is a refinement procedure to extend the SPR by the inclusion of new interpolated point values in a security zone. Then, for points in the refined grid, such derivatives are approximated by uniform finite differences, using a step size proportional to each point local scale. If required neighboring stencils are not present in the grid, the corresponding missing point values are approximated from coarser scales using the interpolating subdivision scheme. Using the cubic interpolation subdivision scheme, we demonstrate that such adaptive finite differences can be formulated in terms of a collocation scheme based on the wavelet expansion associated to the SPR. For this purpose, we prove some results concerning the local behavior of such wavelet reconstruction operators, which stand for SPR grids having appropriate structures. This statement implies that the adaptive finite difference scheme and the one using the step size of the finest level produce the same result at SPR grid points. Consequently, in addition to the refinement strategy, our analysis indicates that some care must be taken concerning the grid structure, in order to keep the truncation error under a certain accuracy limit. Illustrating results are presented for 2D Maxwell's equation numerical solutions.
Resumo:
Formaldehyde is classified by IARC as carcinogenic to humans (nasopharyngeal cancer). Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. XRCC3 is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks (Thr241Met polymorphism). The aim of the study is to determine whether there is an in vivo association between genetic polymorphism of the gene XRCC3 and the frequency of genotoxicity biomarkers in subjects exposed or not to formaldehyde and with or without tobacco consumption.
Resumo:
The first examples of low temperature N-oxy-3-aza Cope rearrangements, leading to functionalised allenes are described, where the Z-configuration of the enaminic double bond in the rearranging system proves critical.
Resumo:
In this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized.
Resumo:
When a paleomagnetic pole is sought for in an igneous body, the host rocks should be subjected to a contact test to assure that the determined paleopole has the age of the intrusion. If the contact test is positive, it precludes the possibility that the measured magnetization is a later effect. Therefore, we investigated the variations of the remanent magnetization along cross-sections of rocks hosting the Foum Zguid dyke (southern Morocco) and the dyke itself. A positive contact test was obtained, but it is mainly related with Chemical/Crystalline Remanent Magnetization due to metasomatic processes in the host-rocks during magma intrusion and cooling, and not only with Thermo-Remanent Magnetization as ordinarily assumed in standard studies. Paleomagnetic data obtained within the dyke then reflect the Earth magnetic field during emplacement of this well-dated (196.9 +/- 1.8 Ma) intrusion.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a double colour laser scanned photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the colour detection process are analysed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.