18 resultados para component community

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the Intergovernmental Panel on Climate Change, the average temperature of the Earth's surface has risen about 1º C in the last 100 years and will increase, depending on the scenario emissions of Greenhouse Gases. The rising temperatures could trigger environmental effects like rising sea levels, floods, droughts, heat waves, hurricanes. With growing concerns about different environmental issues and the need to address climate change, institutions of higher education should create knowledge and integrate sustainability into teaching programs and research programs, as well as promoting environmental issues for society. The aim of this study is to determine the carbon footprint of the academic community of Lisbon School of Health Technology (ESTeSL) in 2013, identifying possible links between the Carbon Footprint and the different socio-demographic variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Gestão e Avaliação de Tecnologias em Saúde

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures were used to guarantee the models' robustness and predictive ability. Lipophilicity was shown not to be relevant to explain the activity of these derivatives, whereas shorter N-N distances and lengthy substituents lead to more active compounds. Compounds I, 2, 4, 5 and 6, showed measured activities against H37Rv higher than INH (i.e., MIC <= 0.28 mu M), while compound 9 exhibited a six fold decrease in MIC against the katG (S315T) mutated strain, by comparison with INH (Le., 6.9 vs. 43.8 mu M). All compounds were ineffective against H37Rv(INH) (Delta katG), a strain with a full deletion of the katG gene, thus corroborating the importance of KatG in the activation of INH-based compounds. The most potent compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cardiovascular diseases and other non-communicable diseases are major causes of morbidity and mortality, responsible for 38 million deaths in 2012, 75 % occurring in low- and middle-income countries. Most of these countries are facing a period of epidemiological transition, being confronted with an increased burden of non-communicable diseases, which challenge health systems mainly designed to deal with infectious diseases. With the adoption of the World Health Organization “Global Action Plan for the Prevention and Control of non-communicable diseases, 2013–2020”, the national dimension of risk factors for non-communicable diseases must be reported on a regular basis. Angola has no national surveillance system for non-communicable diseases, and periodic population-based studies can help to overcome this lack of information. CardioBengo will collect information on risk factors, awareness rates and prevalence of symptoms relevant to cardiovascular diseases, to assist decision makers in the implementation of prevention and treatment policies and programs. Methods: CardioBengo is designed as a research structure that comprises a cross-sectional component, providing baseline information and the assembling of a cohort to follow-up the dynamics of cardiovascular diseases risk factors in the catchment area of the Dande Health and Demographic Surveillance System of the Health Research Centre of Angola, in Bengo Province, Angola. The World Health Organization STEPwise approach to surveillance questionnaires and procedures will be used to collect information on a representative sex-age stratified sample, aged between 15 and 64 years old. Discussion: CardioBengo will recruit the first population cohort in Angola designed to evaluate cardiovascular diseases risk factors. Using the structures in place of the Dande Health and Demographic Surveillance System and a reliable methodology that generates comparable results with other regions and countries, this study will constitute a useful tool for the surveillance of cardiovascular diseases. Like all longitudinal studies, a strong concern exists regarding dropouts, but strategies like regular visits to selected participants and a strong community involvement are in place to minimize these occurrences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho de Projecto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Artes Performativas – Teatro-Música.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis ( VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.