14 resultados para SOFTWARE QUALITY CLASSIFICATION
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.
Resumo:
O presente projecto tem como objectivo a disponibilização de uma plataforma de serviços para gestão e contabilização de tempo remunerável, através da marcação de horas de trabalho, férias e faltas (com ou sem justificação). Pretende-se a disponibilização de relatórios com base nesta informação e a possibilidade de análise automática dos dados, como por exemplo excesso de faltas e férias sobrepostas de trabalhadores. A ênfase do projecto está na disponibilização de uma arquitectura que facilite a inclusão destas funcionalidades. O projecto está implementado sobre a plataforma Google App Engine (i.e. GAE), de forma a disponibilizar uma solução sob o paradigma de Software as a Service, com garantia de disponibilidade e replicação de dados. A plataforma foi escolhida a partir da análise das principais plataformas cloud existentes: Google App Engine, Windows Azure e Amazon Web Services. Foram analisadas as características de cada plataforma, nomeadamente os modelos de programação, os modelos de dados disponibilizados, os serviços existentes e respectivos custos. A escolha da plataforma foi realizada com base nas suas características à data de iniciação do presente projecto. A solução está estruturada em camadas, com as seguintes componentes: interface da plataforma, lógica de negócio e lógica de acesso a dados. A interface disponibilizada está concebida com observação dos princípios arquitecturais REST, suportando dados nos formatos JSON e XML. A esta arquitectura base foi acrescentada uma componente de autorização, suportada em Spring-Security, sendo a autenticação delegada para os serviços Google Acounts. De forma a permitir o desacoplamento entre as várias camadas foi utilizado o padrão Dependency Injection. A utilização deste padrão reduz a dependência das tecnologias utilizadas nas diversas camadas. Foi implementado um protótipo, para a demonstração do trabalho realizado, que permite interagir com as funcionalidades do serviço implementadas, via pedidos AJAX. Neste protótipo tirou-se partido de várias bibliotecas javascript e padrões que simplificaram a sua realização, tal como o model-view-viewmodel através de data binding. Para dar suporte ao desenvolvimento do projecto foi adoptada uma abordagem de desenvolvimento ágil, baseada em Scrum, de forma a implementar os requisitos do sistema, expressos em user stories. De forma a garantir a qualidade da implementação do serviço foram realizados testes unitários, sendo também feita previamente a análise da funcionalidade e posteriormente produzida a documentação recorrendo a diagramas UML.
Resumo:
Background: Poor nutritional status and worse health-related quality of life (QoL) have been reported in haemodialysis (HD) patients. The utilization of generic and disease specific QoL questionnaires in the same population may provide a better understanding of the significance of nutrition in QoL dimensions. Objective: To assess nutritional status by easy to use parameters and to evaluate the potential relationship with QoL measured by generic and disease specific questionnaires. Methods: Nutritional status was assessed by subjective global assessment adapted to renal patients (SGA), body mass index (BMI), nutritional intake and appetite. QoL was assessed by the generic EuroQoL and disease specific Kidney Disease Quality of Life-Short Form (KDQoL-SF) questionnaires. Results: The study comprised 130 patients of both genders, mean age 62.7 ± 14.7 years. The prevalence of undernutrition ranged from 3.1% by BMI ≤ 18.5 kg/m2 to 75.4% for patients below energy and protein intake recommendations. With the exception of BMI classification, undernourished patients had worse scores in nearly all QoL dimensions (EuroQoL and KDQoL-SF), a pattern which was dominantly maintained when adjusted for demographics and disease-related variables. Overweight/obese patients (BMI ≥ 25) also had worse scores in some QoL dimensions, but after adjustment the pattern was maintained only in the symptoms and problems dimension of KDQoL-SF (p = 0.011). Conclusion: Our study reveals that even in mildly undernourished HD patients, nutritional status has a significant impact in several QoL dimensions. The questionnaires used provided different, almost complementary perspectives, yet for daily practice EuroQoL is simpler. Assuring a good nutritional status, may positively influence QoL.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Purpose - This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose (E) for pelvis using automatic exposure control (AEC) and non-AEC in a Computed Radiography (CR) system. Methods and materials - To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60–120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the two alternative forced choice (2AFC) visual grading software. PCXMC software was used to estimate E. Results - A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p > 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. E results show a statistically significant decrease (p = 0.000) on the 75th quartile from 0.37 mSv at 60 kVp to 0.13 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion - Using the 10 kVp rule, no significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant E reduction is observed.
Resumo:
Purpose - To compare the image quality and effective dose applying the 10 kVp rule with manual mode acquisition and AEC mode in PA chest X-ray. Method - 68 images (with and without lesions) were acquired using an anthropomorphic chest phantom using a Wolverson Arcoma X-ray unit. These images were compared against a reference image using the 2 alternative forced choice (2AFC) method. The effective dose (E) was calculated using PCXMC software using the exposure parameters and the DAP. The exposure index (lgM provided by Agfa systems) was recorded. Results - Exposure time decreases more when applying the 10 kVp rule with manual mode (50%–28%) when compared with automatic mode (36%–23%). Statistical differences for E between several ionization chambers' combinations for AEC mode were found (p = 0.002). E is lower when using only the right AEC ionization chamber. Considering the image quality there are no statistical differences (p = 0.348) between the different ionization chambers' combinations for AEC mode for images with no lesions. Considering lgM values, it was demonstrated that they were higher when the AEC mode was used compared to the manual mode. It was also observed that lgM values obtained with AEC mode increased as kVp value went up. The image quality scores did not demonstrate statistical significant differences (p = 0.343) for the images with lesions comparing manual with AEC mode. Conclusion - In general the E is lower when manual mode is used. By using the right AEC ionising chamber under the lung the E will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the visibility of the lesions or image quality.
Resumo:
Aim - A quantative primary study to determine whether increasing source to image distance (SID), with and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces dose whilst still producing an image of diagnostic quality. Methods - Using a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR) was calculated for comparison. For each acquisition, femoral head diameter was also measured for magnification indication. Results - Results demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant mAs was used. No significant statistical (T-test) difference (p = 0.967) between image quality was detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID. Conclusion - For CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without adversely affecting image quality.
Resumo:
Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.
Resumo:
Purpose: To compare image quality and effective dose when the 10 kVp rule is applied with manual and AEC mode in PA chest X-ray. Methods and Materials: A total of 68 images (with and without lesions) were acquired of an anthropomorphic chest phantom in a Wolverson Arcoma X-ray unit. The images were evaluated against a reference image using image quality criteria and the 2 alternative forced choice (2 AFC) method by five radiographers. The effective dose was calculated using PCXMC software using the exposure parameters and DAP. The exposure index (lgM) was recorded. Results: Exposure time decreases considerably when applying the 10 kVp rule in manual mode (50%-28%) compared to AEC mode (36%-23%). Statistical differences for effective dose between several AEC modes were found (p=0.002). The effective dose is lower when using only the right AEC ionization chamber. Considering image quality, there are no statistical differences (p=0.348) between the different AEC modes for images with no lesions. Using a higher kVp value the lgM values will also increase. The lgM values showed significant statistical differences (p=0.000). The image quality scores did not present statistically significant differences (p=0.043) for the images with lesions when comparing manual with AEC modes. Conclusion: In general, the dose is lower in the manual mode. By using the right AEC ionising chamber the effective dose will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the detectability of the lesions.
Resumo:
Purpose: To determine whether using different combinations of kVp and mAs with additional filtration can reduce the effective dose to a paediatric phantom whilst maintaining diagnostic image quality. Methods: 27 images of a paediatric AP pelvis phantom were acquired with different kVp, mAs and additional copper filtration. Images were displayed on quality controlled monitors with dimmed lighting. Ten diagnostic radiographers (5 students and 5 experienced radiographers) had eye tests to assess visual acuity before rating the images. Each image was rated for visual image quality against a reference image using 2 alternative forced choice software using a 5-point Likert scale. Physical measures (SNR and CNR) were also taken to assess image quality. Results: Of the 27 images rated, 13 of them were of acceptable image quality and had a dose lower than the image with standard acquisition parameters. Two were produced without filtration, 6 with 0.1mm and 5 with 0.2mm copper filtration. Statistical analysis found that the inter-rater and intra-rater reliability was high. Discussion: It is possible to obtain an image of acceptable image quality with a dose that is lower than published guidelines. There are some areas of the study that could be improved. These include using a wider range of kVp and mAs to give an exact set of parameters to use. Conclusion: Additional filtration has been identified as amajor tool for reducing effective dose whilst maintaining acceptable image quality in a 5 year old phantom.
Resumo:
Mestrado em Ensino da Música.
Resumo:
Purpose: This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose for pelvis using automatic exposure control (AEC) and non-AEC in a computed radiography (CR) system. Methods and Materials: To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60-120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the 2 AFC visual grading software. PCXMC software was used to estimate the effective dose. Results: A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p> 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. Effective dose results show a statistical significant decrease (p=0.000) on the 75th quartile from 0.3 mSv at 60 kVp to 0.1 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion: No significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant effective dose reduction is observed.
Resumo:
Purpose: To evaluate if physical measures of noise predict image quality at high and low noise levels. Method: Twenty-four images were acquired on a DR system using a Pehamed DIGRAD phantom at three kVp settings (60, 70 and 81) across a range of mAs values. The image acquisition setup consisted of 14 cm of PMMA slabs with the phantom placed in the middle at 120 cm SID. Signal-to-noise ratio (SNR) and Contrast-tonoise ratio (CNR) were calculated for each of the images using ImageJ software and 14 observers performed image scoring. Images were scored according to the observer`s evaluation of objects visualized within the phantom. Results: The R2 values of the non-linear relationship between objective visibility score and CNR (60kVp R2 = 0.902; 70Kvp R2 = 0.913; 80kVp R2 = 0.757) demonstrate a better fit for all 3 kVp settings than the linear R2 values. As CNR increases for all kVp settings the Object Visibility also increases. The largest increase for SNR at low exposure values (up to 2 mGy) is observed at 60kVp, when compared with 70 or 81kVp.CNR response to exposure is similar. Pearson r was calculated to assess the correlation between Score, OV, SNR and CNR. None of the correlations reached a level of statistical significance (p>0.01). Conclusion: For object visibility and SNR, tube potential variations may play a role in object visibility. Higher energy X-ray beam settings give lower SNR but higher object visibility. Object visibility and CNR at all three tube potentials are similar, resulting in a strong positive relationship between CNR and object visibility score. At low doses the impact of radiographic noise does not have a strong influence on object visibility scores because in noisy images objects could still be identified.