12 resultados para S. cerevisiae
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Coumarin and derivates (coumarins) are phenolic compounds widely distributed in the plant kingdom, as for example in tonka beam and cassia cinnamon. These compounds are involved in various processes such as the defense against phytopathogens, the response to abiotic stress and the regulation of oxidative stress. Coumarins can be produced synthetically and are broadly used as additives in the food, perfumes and cosmetics and pharmaceutical industry due th their vast array of biological activities, including anticoagulant, analgesic, anti-inflammatory and anti-microbial.
Resumo:
GimC/Prefoldin is a hetero-oligomeric complex involved in cytoskeleton biogenesis. In order to identify by two-hybrid system targets that directly interact with Gims and support the stress phenotypes, this work aimed the functional validation of all Gims in saccharomyces cerevisiae.
Resumo:
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Resumo:
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.
Resumo:
YAP4, a member of the yeast activator protein (YAP) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response.
Resumo:
Six open reading frames (ORFs) located on chromosome VII of Saccharomyces cerevisiae (YGR205w, YGR210c, YGR211w, YGR241c, YGR243w and YGR244c) were disrupted in two different genetic backgrounds using short-flanking homology (SFH) gene replacement. Sporulation and tetrad analysis showed that YGR211w, recently identified as the yeast ZPR1 gene, is an essential gene. The other five genes are non-essential, and no phenotypes could be associated to their inactivation. Two of these genes have recently been further characterized: YGR241c (YAP1802) encodes a yeast adaptor protein and YGR244c (LSC2) encodes the b-subunit of the succinyl-CoA ligase. For each ORF, a replacement cassette with long flanking regions homologous to the target locus was cloned in pUG7, and the cognate wild-type gene was cloned in pRS416.
Resumo:
We report the nucleotide sequence of a 17,893 bp DNA segment from the right arm of Saccharomyces cerevisiae chromosome VII. This fragment begins at 482 kb from the centromere. The sequence includes the BRF1 gene, encoding TFIIIB70, the 5' portion of the GCN5 gene, an open reading frame (ORF) previously identified as ORF MGA1, whose translation product shows similarity to heat-shock transcription factors and five new ORFs. Among these, YGR250 encodes a polypeptide that harbours a domain present in several polyA binding proteins. YGR245 is similar to a putative Schizosaccharomyces pombe gene, YGR248 shows significant similarity with three ORFs of S. cerevisiae situated on different chromosomes, while the remaining two ORFs, YGR247 and YGR251, do not show significant similarity to sequences present in databases.
Resumo:
We report the sequence of a 9000 bp fragment from the right arm of Saccharomyces cerevisiae chromosome VII. Analysis of the sequence revealed four complete previously unknown open reading frames, which were named G7587, G7589, G7591 and G7594 following standard rules for provisional nomenclature. Outstanding features of some of these proteins were the homology of the putative protein coded by G7589 with proteins involved in transcription regulation and the transmembrane domains predicted in the putative protein coded by G7591.
Resumo:
Microbial adhesion is a field of recognized relevance and, as such, an impressive array of tools has been developed to understand its molecular mechanisms and ultimately for its quantification. Some of the major limitations found within these methodologies concern the incubation time, the small number of cells analyzed, and the operator's subjectivity. To overcome these aspects, we have developed a quantitative method to measure yeast cells' adhesion through flow cytometry. In this methodology, a suspension of yeast cells is mixed with green fluorescent polystyrene microspheres (uncoated or coated with host proteins). Within 2 h, an adhesion profile is obtained based on two parameters: percentage and cells-microsphere population's distribution pattern. This flow cytometry protocol represents a useful tool to quantify yeast adhesion to different substrata in a large scale, providing manifold data in a speedy and informative manner.
Resumo:
A 9.9 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains four open reading frames (ORFs) longer than 100 amino acids. One gene, PFK1, has already been cloned and sequenced and the other one is the probable yeast gene coding for the beta-subunit of the succinyl-CoA synthetase. The two remaining ORFs share homology with the deduced amino acid sequence (and their physical arrangement is similar to that) of the YHR161c and YHR162w ORFs from chromosome VIII.
Resumo:
A 17.6 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains twelve open reading frames (ORFs) longer than 100 amino acids. Three genes had already been cloned and sequenced: CCT, ADE3 and TR-I. Two ORFs are similar to other yeast genes: G7722 with the YAL023 (PMT2) and PMT1 genes, encoding two integral membrane proteins, and G7727 with the first half of the genes encoding elongation factors 1gamma, TEF3 and TEF4. Two other ORFs, G7742 and G7744, are most probably yeast orthologues of the human and Paracoccus denitrificans electron-transferring flavoproteins (beta chain) and of the Escherichia coli phosphoserine phosphohydrolase. The five remaining identified ORFs do not show detectable homology with other protein sequences deposited in data banks. The sequence has been deposited in the EMBL data library under Accession Number Z49133.
Resumo:
Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.