21 resultados para PHYSIOLOGICAL EQUIVALENT TEMPERATURE
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (eta) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 degrees C of the measured brain phantom temperature when the brain phantom is lowered 10. C and then returned to the original temperature (37 degrees C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.
Resumo:
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)(6) as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm(-2) and a partial pressure ratio of O-2 to Cr(CO)(6) of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s(-1) and mean particle sizes of 1.85 mu m were measured for these films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The deposition of highly oriented a-axis CrO(2) films onto Al(2)O(3)(0001) by atmospheric pressure (AP)CVD at temperatures as low as 330 C is reported. Deposition rates strongly depend on the substrate temperature, whereas for film surface microstructures the dependence is mainly on film thickness. For the experimental conditions used in this work, CrO(2) growth kinetics are dominated by a surface reaction mechanism with an apparent activation energy of (121.0 +/- 4.3) kJ mol(-1). The magnitude and temperature dependence of the saturation magnetization, up to room temperature, is consistent with bulk measurements.
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
The main properties of magnetized strangelets, namely, their energy per baryon, radius and electric charge, are studied in the unpaired strange quark matter phase. Temperature effects are taken into account in order to study their stability compared to the (56)Fe isotope and non-magnetized strangelets within the framework of the MIT bag model. It is concluded that the presence of a magnetic field tends to stabilize more the strangelets, even when temperature is considered. We find that the electric charge is modified in the presence of the magnetic field, leading to higher charge values for magnetized strangelets, when compared to the non-magnetized case.
Resumo:
The main properties of strangelets, namely their energy per baryon, radius and electric charge, are studied in the unpaired magnetized strange quark matter (MSQM) and paired magnetized colour flavour locked (MCFL) phases. Temperature effects are taken into account in order to study their stability compared to the Fe-56 isotope and nonmagnetized strangelets within the framework of the MIT bag model. We conclude that the presence of a magnetic field tends to stabilize the strangelets more, even when temperature is considered. It is also shown that MCFL strangelets are more stable than ordinary MSQM strangelets for typical gap values of the order of O(100) MeV. A distinctive feature in the detection of strangelets either in cosmic rays or in heavy-ion collider experiments could be their electric charge. We find that the electric charge is modified in the presence of the magnetic field, leading to higher (lower) charge values for MSQM (MCFL) strangelets, when compared to the nonmagnetized case.
Resumo:
The purpose of this study is a cross-qualitative and quantitative gait analysis in 3 traumatic unilateral amputees using prosthesis with pin suspension compared to the use of prosthesis with a high vacuum suspension, the Harmony® system. In Portugal, there aren’t many studies made in the field of orthotic and prosthetic and knowledge about the number of amputees in the country. The only know is that the major cause of lower limb amputation is diabetes mellitus, being the most affected population the older age groups. The combination of technological developments with daily needs of the amputees is becoming more and more important for they better quality of life. This work was done during the curricular unit “Investigation in Prosthetics and Orthotics” class, in the 4th year of Health Technology School of Lisbon, in Portugal. This study analyzes if the change of suspension in transtibial prosthesis will influence some physiological response in amputees.
Resumo:
We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]
Resumo:
Levels of risk for future disability can be assessed with grip strength. This assessment is of fundamental importance for establishing prevention strategies. It also allows verifying relationships with functional capacity of individuals. Most studies on grip strength use the JAMAR Hydraulic dynamometer that provides the value of isometric force obtained during the performance of grip movement and is considered the “gold standard” for measurement of grip strength. However, there are different dynamometers available commercially, such as portable computerized dynamometer E-Link (Biometrics), which provides the value of maximum force (peak force) in addition to other variables as the rate of fatigue for hand strength, among others. Of our knowledge, there are no studies that allow us to accept or not and compare values obtained with both devices and perhaps use them interchangeably. The aim of this study was to evaluate the absolute agreement between the measurements of grip strength (peak force or maximum force in kg) obtained from two different devices (portable dynamometers): a computerized (E-Link, Biometrics) and one hydraulic (JAMAR).
Resumo:
The main purpose of the present study is to determine if the circadian rhythms present in the human bone marrow are likely to influence 3’- deoxy- 3’-[18F] Fluorothymidine (18F-FLT) uptake in the same organ. The 18F-FLT is a Thymidine analogous proliferation agent. The relatively high physiological uptake of this tracer in the bone marrow diminishes the Tumor/Background (T/B) ratio, decreasing the detection accuracy of PET/CT and possibly affecting SUV quantifications.
Resumo:
Os sistemas fotovoltaicos produzem energia eléctrica limpa, e inesgotável na nossa escala temporal. A Agência Internacional de Energia encara a tecnologia fotovoltaica como uma das mais promissoras, esperando nas suas previsões mais optimistas, que em 2050 possa representar 20% da produção eléctrica mundial, o equivalente a 18000 TWh. No entanto, e apesar do desenvolvimento notável nas últimas décadas, a principal condicionante a uma maior proliferação destes sistemas é o ainda elevado custo, aliado ao seu fraco desempenho global. Apesar do custo e ineficiência dos módulos fotovoltaicos ter vindo a diminuir, o rendimento dos sistemas contínua dependente de factores externos sujeitos a grande variabilidade, como a temperatura e a irradiância, e às limitações tecnológicas e falta de sinergia dos seus equipamentos constituintes. Neste sentido procurou-se como objectivo na elaboração desta dissertação, avaliar o potencial de optimização dos sistemas fotovoltaicos recorrendo a técnicas de modelação e simulação. Para o efeito, em primeiro lugar foram identificados os principais factores que condicionam o desempenho destes sistemas. Em segundo lugar, e como caso prático de estudo, procedeu-se à modelação de algumas configurações de sistemas fotovoltaicos, e respectivos componentes em ambiente MatlabTM/SimulinkTM. Em seguida procedeu-se à análise das principais vantagens e desvantagens da utilização de diversas ferramentas de modelação na optimização destes sistemas, assim como da incorporação de técnicas de inteligência artificial para responder aos novos desafios que esta tecnologia enfrentará no futuro. Através deste estudo, conclui-se que a modelação é não só um instrumento útil para a optimização dos actuais sistemas PV, como será, certamente uma ferramenta imprescindível para responder aos desafios das novas aplicações desta tecnologia. Neste último ponto as técnicas de modelação com recurso a inteligência artificial (IA) terão seguramente um papel preponderante. O caso prático de modelação realizado permitiu concluir que esta é igualmente uma ferramenta útil no apoio ao ensino e investigação. Contudo, convém não esquecer que um modelo é apenas uma aproximação à realidade, devendo recorrer-se sempre ao sentido crítico na interpretação dos seus resultados.
Resumo:
We investigate, via numerical simulations, mean field, and density functional theories, the magnetic response of a dipolar hard sphere fluid at low temperatures and densities, in the region of strong association. The proposed parameter-free theory is able to capture both the density and temperature dependence of the ring-chain equilibrium and the contribution to the susceptibility of a chain of generic length. The theory predicts a nonmonotonic temperature dependence of the initial (zero field) magnetic susceptibility, arising from the competition between magnetically inert particle rings and magnetically active chains. Monte Carlo simulation results closely agree with the theoretical findings. DOI: 10.1103/PhysRevLett.110.148306
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.