36 resultados para Microwave disinfection
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
MOR zeolites were modified via desilication treatments with NaOH, under conventional and microwave heating. The samples were characterized by powder X-ray diffraction, (27)Al and (29)Si NMR spectroscopy. TEM and N(2) adsorption at -196 degrees C. The acidity of the samples and the space available inside the pores were evaluated through a catalytic model reaction, the isomerization of m-xylene, for which the profiles of the coke thermal decomposition were also analyzed. Powder X-ray diffraction and (29)Si and (27)Al MNR results show that in comparison with conventional heating, microwave irradiation (a less time consuming process) leads to identical amount of Si extraction from the zeolite framework. With this treatment. in addition to the customary mesopores development promoted by conventional heating, a partial conversion of the zeolite microporosity into larger micropores, is observed. The microwave irradiated and conventionally heated samples show different catalytic behavior in the m-xylene isomerization model reaction. It was observed that, by controlling the experimental conditions, it is possible to obtain samples with catalytic properties closer to the parent material, which is also confirmed by the respective coke analysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A series of six new mixed-ligand dinuclear Mn(II, II) complexes of three different hydrazone Schiff bases (H3L1, H3L2 and H3L3), derived from condensation of the aromatic acid hydrazides benzohydrazide, 2-aminobenzohydrazide or 2-hydroxybenzohydrazide, with 2,3-dihydroxy benzaldehyde, respectively, is reported. Reactions of Mn(NO3)(2) center dot 4H(2)O with the H3L1-3 compounds, in the presence of pyridine (1 : 1 : 1 mole ratio), in methanol at room temperature, yield [Mn(H2L1)(py)(H2O)](2)(NO3)(2) center dot 2H(2)O (1 center dot 2H(2)O), [Mn(H2L2)(py)(CH3OH)](2)(NO3)(2) center dot 4H(2)O (2 center dot 4H(2)O) and [Mn(H2L3)(py)(H2O)](2)(NO3)(2) (3) respectively, whereas the use of excess pyridine yields complexes with two axially coordinated pyridine molecules at each Mn(II) centre, viz. [Mn(H2L1)(py)(2)] 2(NO3)(2) center dot H2O (4 center dot H2O), [Mn(H2L2)(py) H-O (6 center dot 2CH(3)OH), respectively. In all the complexes, the (H2L1-3)-ligand coordinates in the keto form. Complexes 1 center dot 2H(2)O, 2 center dot 4H(2)O, 4 center dot H2O, 5 center dot 2H(2)O and 6 center dot 2CH(3)OH are characterized by single crystal X-ray diffraction analysis. The complexes 1, 2 and 6, having different coordination environments, have been selected for variable temperature magnetic susceptibility measurements to examine the nature of magnetic interaction between magnetically coupled Mn(II) centres and also for exploration of the catalytic activity towards microwave assisted oxidation of alcohols. A yield of 81% (acetophenone) is obtained using a maximum of 0.4% molar ratio of catalyst relative to the substrate in the presence of TEMPO and in aqueous basic solution, under mild conditions.
Resumo:
The water-soluble copper(II) complex [Cu(H2R)(HL)]center dot H2O (1) was prepared by reaction of copper(II) nitrate hydrate with (E)-2-(((1-hydroxynaphthalen-2-yl)methylene)amino) benzenesulfonic acid (H2L) and diethanolamine (H3R). It was characterized by IR and ESI-MS spectroscopies, elemental and X-ray crystal structural analyses. 1 shows a high catalytic activity for the solvent-free microwave (MW) assisted oxidation of 1-phenylethanol with tert-butylhydroperoxide, leading, in the presence of TEMPO, to yields up to 85% (TON = 850) in a remarkably short reaction time (15 min, with the corresponding TOE value of 3.40 x 10(3) h(-1)) under low power (25W) MW irradiation. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (eta) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 degrees C of the measured brain phantom temperature when the brain phantom is lowered 10. C and then returned to the original temperature (37 degrees C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.
Resumo:
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Resumo:
Aroylhydrazone oxidovanadium compounds, viz, the oxidoethoxidovanadium(V) [VO(OEt)L1] (1) (H2L =salicylaldehyde-2-hydroxybenzoylhydrazone), the salt like dioxidovanadium(V) (NH3CH2CH2OH)(+) [VO2L](-) (2), the mixed-ligand oxidovanadium(V) [VO(hq)L](Hhq = 8-hydroxyquinoline) (3) and the vanadium(IV) [VO(phen)L] (phen=1,10-phenanthroline) (4) complexes (3 and 4 obtained by the first time), have been tested as catalysts for solvent-free microwave-assisted oxidation of aromatic and alicyclic secondary alcohols with tert-butylhydroperoxide. A facile, efficient and selective solvent-free synthesis of ketones was achieved with yields up to 99% (TON= 497, TOF= 993 h(-1) for 3) and 58% (TON =291, TOF= 581 h(-1) for 2) for acetophenone and cyclohexanone, respectively, after 30 min under low power (25W) microwave irradiation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The iron(III) complexes [H(EtOH)][FeCl2(L)(2)] (1), [H(2)bipy](1/2)[FeCl2(L)(2)].DMF (2) and [FeCl2(L)(2,2'-bipy)] (3) (L = 3-amino-2-pyrazinecarboxylate; H(2)bipy = doubly protonated 4,4'-bipyridine; 2,2'-bipy = 2,2'-bipyridine, DMF = dimethylformamide) have been synthesized and fully characterized by IR, elemental and single-crystal X-ray diffraction analyses, as well as by electrochemical methods. Complexes 1 and 2 have similar mononuclear structures containing different guest molecules (protonated ethanol for 1 and doubly protonated 4,4'-bipyridine for 2) in their lattices, whereas the complex 3 has one 3-amino-2-pyrazinecarboxylate and a 2,2'-bipyridine ligand. They show a high catalytic activity for the low power (10 W) solvent-free microwave assisted peroxidative oxidation of 1-phenylethanol, leading, in the presence of TEMPO, to quantitative yields of acetophenone [TOFs up to 8.1 x 10(3) h(-1), (3)] after 1 h. Moreover, the catalysts are of easy recovery and reused, at least for four consecutive cycles, maintaining 83 % of the initial activity and concomitant rather high selectivity. 3-Amino-2-pyrazinecarboxylic acid is used to synthesize three new iron(III) complexes which act as heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation of 1-phenylethanol.
Resumo:
A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.
Resumo:
The highly efficient eco-friendly synthesis of ketones (yields over 99%) from secondary alcohols is achieved by combination of [FeCl2{eta(3)-HC(pz)(3)}] (pz = pyrazol-1-yl) supported on functionalized multi-walled carbon nanotubes and microwave irradiation, in a solvent-free medium. The carbon homoscorpionate iron(II) complex is the first one of this class to be used as catalyst for the oxidation of alcohols.
Resumo:
The study’s main purpose was the assessment of the environmental fungal contamination, the exploration of possible associations between related environmental variables and the study of the relationship between fungal contamination of air and surfaces. A descriptive study was developed based upon air and surfaces monitoring for fungal contamination in ten indoor gymnasiums with a swimming pool located in Lisbon’s urban area. Fifty 200 litres air samples and 120 surface swabs were collected. Surfaces samples were collected before and after cleaning and disinfection and temperature and relative humidity values were registered during the collection period. Twenty five different species of fungi were identified in the air samples, being the three most commonly isolated genera the following: Cladosporium (36.6%), Penicillium (19.0%) and Aspergillus (10.2%). Thirty-seven different species of fungi were identified in the surface samples. Fusarium sp. was the most frequent genera before (19.1%) and after (17.2%) cleaning and disinfection. There was a significant association between the numbers of visitors and the fungal contamination determined in the surface samples (p<0.05). There was no significant association (p>0.05) between the contamination encountered in the air samples and the one registered in the surface samples and between the fungal contamination and the temperature or relative humidity measured on location. The data obtained enabled the assessment of the establishment’s fungal contamination and led the authors to conclude, consequently, that physical activity, which generally promotes health, can in fact be challenged by this factor.
Resumo:
This article presents the design and test of a receiver front end aimed at LMDS applications at 28.5 GHz. It presents a system-level design after which the receiver was designed. The receiver comprises an LNA, quadrature mixer and quadrature local oscillator. Experimental results at 24 GHz center frequency show a conversion voltage gain of 15 dB and conversion noise figure of 14 5 dB. The receiver operates from a 2 5 V power supply with a total current consumption of 31 mA.
Resumo:
Several antineoplasic drugs have been demonstrated to be carcinogenic or to have mutagenic and teratogenic effects. The greatest protection is achieved with the implementation of administrative and engineering controls and safety procedures. Objective: to evaluate the improvements on pharmacy technicians' work practices, after the implementation of operational procedures related to individual protection, biologic safety cabinet disinfection and cytotoxic drug preparation. Method: case-study in a hospital pharmacy undergoing a certification process. Six pharmacy technicians were observed during their daily activities. Characterization of the work practices was made using a checklist based on ISOPP and PIC guidelines. The variables studied concerning cleaning/disinfection procedures, personal protective equipment and procedures for preparing cytotoxic drugs. The same work practices were evaluated after four months of operational procedures implementation. Concordance between work practices and guidelines was considered to be a quality indicator (guidelines concordance practices number/total number of practices x 100). Results: improvements were observed after operational procedures implementation. An improvement of 6,25% in personal protective equipment practice was achieved by changing second pair of gloves every thirty minutes. The major progress, 10%, was obtained in disinfection procedure, where 80% of tasks are now realized according to guidelines.By now, we hot an improvement of only 1% at drug preparation procedure by placing one cytotoxic drug at a time inside the biological safety cabinet. Then, 85% of practices are according to guidelines. Conclusion: before operational procedures implementation 80,3% of practices were according to the guidelines, while now is 84,4%. This indicates that is necessary to review the procedures frequently in the benefit to reduce the risks associated with handling cytotoxic drugs and maintenance of drug specifications.
Resumo:
Dedicated Short Range Communications (DSRC) is the key enabling technology for the present and future vehicular communication for various applications, such as safety improvement and traffic jam mitigation. This paper describes the development of a microstrip antenna array for the roadside equipment of a DSRC system, whose characteristics are according with the vehicular communications standards. The proposed antenna, with circular polarization, has a wide bandwidth, enough to cover the current European DSRC 5.8 GHz band and the future 5.9 GHz band for next generation DSRC communications. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 2794-2796, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26394
Resumo:
Mestrado em Medicina Nuclear. Área de especialização: Radiofarmácia.
Resumo:
As comunicações ópticas e as comunicações sem fios têm sofrido uma grande evolução ao longo das últimas décadas. Com o objectivo de juntar as vantagens de cada um dos sistemas surgiu o que se designa por rádio sobre fibra. Este sistema permite centralizar todo o processamento necessário num só local, na estação central, simplificando assim a estação base. Esta simplificação permite reduzir os custos de implementação e torna o sistema menos complexo. Esta dissertação de mestrado tem como objectivo principal estudar e simular um sistema que permite o envio de sinais vídeo e rádio pela fibra óptica para posterior difusão, utilizando o conceito de rádio sobre fibra. Os sinais enviados foram o LTE (Long Term Evolution), o UWB (Ultra WideBand) e o WiMAX (Worldwide Interoperability for Microwave Access). O primeiro disponibiliza o serviço de voz, o segundo disponibiliza o serviço de televisão e o último dá suporte à internet. Estes sinais foram modulados em OFDM (Orthogonal Frequency Division Multiplex), porque, posteriormente, estes sinais vão ser difundidos num ambiente sem fios e este tipo de modulação minimiza o efeito de multipercurso e da interferência intersimbólica. Com este estudo pretende-se verificar qual a viabilidade de um sistema que permite o envio de três sinais distintos simultaneamente (serviço Triple Play). Ao analisar os resultados deste sistema concluiu-se que a sua aplicabilidade pode apresentar algumas limitações, dependendo do tipo de modulação e do tipo de modulador que se utilize. Os moduladores ópticos utilizados foram o MZ (Mach-Zehnder) e o EA (Electro-Absorption). A qualidade do sinal recebido foi analisada com base no valor de EVM (Error Vector Magnitude). O primeiro modulador foi aquele que apresentou mais limitações, pois o desempenho do sistema é comprometido para distâncias superiores a 40 km e para potências de entrada inferiores a 0 dBm. Este tipo de sistema apresenta um EVM mais baixo quando a potência de entrada utilizada está entre 0 e 6 dBm. Se o modulador utilizado for o EA, o sistema apresenta um EVM mais baixo quando se utiliza um índice de modulação entre 20% e 30%, para uma potência de entrada entre 0 e 2 dBm.