13 resultados para Knowledge-based Potentials

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para a obtenção do grau de mestre em Ciências da Educação - Especialidade em Educação Social e Intervenção Comunitária

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, information overload and the lack of systems that enable locating employees with the right knowledge or skills are common challenges that large organisations face. This makes knowledge workers to re-invent the wheel and have problems to retrieve information from both internal and external resources. In addition, information is dynamically changing and ownership of data is moving from corporations to the individuals. However, there is a set of web based tools that may cause a major progress in the way people collaborate and share their knowledge. This article aims to analyse the impact of ‘Web 2.0’ on organisational knowledge strategies. A comprehensive literature review was done to present the academic background followed by a review of current ‘Web 2.0’ technologies and assessment of their strengths and weaknesses. As the framework of this study is oriented to business applications, the characteristics of the involved segments and tools were reviewed from an organisational point of view. Moreover, the ‘Enterprise 2.0’ paradigm does not only imply tools but also changes the way people collaborate, the way the work is done (processes) and finally impacts on other technologies. Finally, gaps in the literature in this area are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model updating methods often neglect that in fact all physical structures are damped. Such simplification relies on the structural modelling approach, although it compromises the accuracy of the predictions of the structural dynamic behaviour. In the present work, the authors address the problem of finite element (FE) model updating based on measured frequency response functions (FRFs), considering damping. The proposed procedure is based upon the complex experimental data, which contains information related to the damped FE model parameters and presents the advantage of requiring no prior knowledge about the damping matrix structure or its content, only demanding the definition of the damping type. Numerical simulations are performed in order to establish the applicability of the proposed damped FE model updating technique and its results are discussed in terms of the correlation between the simulated experimental complex FRFs and the ones obtained from the updated FE model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the results of applied research on the eco-driving domain based on a huge data set produced from a fleet of Lisbon's public transportation buses for a three-year period. This data set is based on events automatically extracted from the control area network bus and enriched with GPS coordinates, weather conditions, and road information. We apply online analytical processing (OLAP) and knowledge discovery (KD) techniques to deal with the high volume of this data set and to determine the major factors that influence the average fuel consumption, and then classify the drivers involved according to their driving efficiency. Consequently, we identify the most appropriate driving practices and styles. Our findings show that introducing simple practices, such as optimal clutch, engine rotation, and engine running in idle, can reduce fuel consumption on average from 3 to 5l/100 km, meaning a saving of 30 l per bus on one day. These findings have been strongly considered in the drivers' training sessions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis ( VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.