Embedded platform for ECG biometric recognition


Autoria(s): Matos, André Cigarro
Contribuinte(s)

Lourenço, André Ribeiro

Nascimento, José

Data(s)

03/03/2014

03/03/2014

01/10/2013

Resumo

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Muitas das tarefas diárias do ser humano requerem processos que validem a identidade do utilizador. Cartões de identificação, chapas de identificação militar, senhas e códigos são as estratégias mais usuais no campo da validação e identificação de utilizador. Apesar do amplo uso de tais mecanismos, os meios de autenticação baseados na entidade ou no conhecimento do sujeito levantam graves problemas de segurança no que diz respeito ao risco de fraude e roubo de identidade. O uso de características físicas ou comportamentais dos seres vivos como forma de identificálos unicamente, é o tópico da Biometria [bio (vida) + metria (medida)]. A principal vantagem destes sistemas é a dependência completa no individuo, não existindo nenhuma sujeição a objetos ou à memorização de códigos, como ocorre nas estratégias tradicionais. Isto leva a uma maior utilização de sistemas biométricos a fim de aumentar a dificuldade de falsificação de credencias, visto este ser a principal falha dos sistemas de reconhecimento pessoal tradicionais. Por exemplo, uma foto pode fingir um rosto, a íris do olho pode ser falsificada por lentes de contacto e até mesmo a impressão digital pode ser trocada por um dedo de gel. Este trabalho propõe um sistema de reconhecimento biométrico baseado em sinais electrocardiográficos (ECG). As diferenças de potencial podem ser obtidas pela colocação de elétrodos sobre a superfície do corpo e medindo a tensão entre eles. O sistema de aquisição dos sinais ECG deste trabalho é constituído por dois elétrodos colocados um em cada membro superior do utilizador, preferencialmente nas mãos, para um aquisição mais cómoda. A fim de tornar esta solução móvel e facilmente transportável para qualquer local, é proposto um sistema embebido autónomo para autenticação humana baseada no ECG de cada indivíduo. Normalmente, os sistemas baseados em ECG usam hardware capaz de adquirir o sinal e um micro-controlador para enviar os sinais para um computador onde é realizado o tratamento dos dados. Em alternativa, o objetivo deste trabalho é conceber de um prototipo capaz de adquirir e processar o sinal ECG de diferentes indivíduos e, através de um algoritmo de extração e classificação de padrões, autenticar ou identificar as pessoas em questão. Este prototipo será baseado num sistema embebidos capaz de autenticar ou identificar indivíduos em tempo real sem recurso a um computador pessoal ou a qualquer plataforma de processamento externa. O problema do reconhecimento humano com base em biometria, é tipicamente dividido em várias fases (independentemente do tipo de biométrica) típicas de um sistema de reconhecimento de padrões: • Aquisição do sinal biométrico por sensores; • Pré-processamento do sinal de acordo com o sistema adotado; • Extração das características necessárias ao reconhecimento; • Seleção das características mais discriminativas do sujeito; • Classificação das características escolhidas e decisão de qual a correspondência da mesma na base de dados. Nesta abordagem o sinal ECG obtido é segmentado por batimento cardíaco, usando o pico R (complexo R, incluído no complexo QRS, nomes dados às ondas características constituintes do ECG) como ponto de pesquisa para a segmentação. Dois algoritmos de segmentação são estudados, Hamilton e Slope Sum Function (SSF), sendo o SSF a solução implementada no sistema embebido pelas suas propriedades de execução em tempo real. Outra particularidade da implementação do algoritmo SSF é que este foi desenvolvido para detetar pulsos de pressão arterial e é aqui adaptado para a deteção do complexo R, constituinte do sinal ECG. A extração de características do sinal ECG segmentado é baseada na análise do sinal no domínio da frequência e segue um algoritmo proposto por Odinaka. Cada batimento cardíaco é analisado por troços obtidos pela segmentação do sinal em várias janelas sobrepostas. É calculada a transformada de Fourier de cada janela segmentada (em que normalmente é usada uma janela de Hamming para melhor estimativa) e estimada uma distribuição de gaussiana (caracterizada por uma média e desvio padrão) para cada intervalo de frequência que caracteriza o batimento cardíaco típico em analise. Posteriormente, para treino, é estimada a distribuição gaussiana para as janelas extraídas de cada segmento e calculada a sua média entre todos os segmentos. São estas as características guardadas na base de dados para futura comparação com novas aquisições para se efetuar o reconhecimento dos batimentos. A cada nova aquisição, é confirmada a veracidade do utilizador, e é feita uma atualização dos valores da base de dados com os novos adquiridos, através de uma média ponderada. Com este método é possível contornar o efeito temporal nos sinais ECG. É de conhecimento comum que com a evolução da idade do individuo, os seus sinais fisiológicos sofrem pequenas alterações e o ECG não é exceção. Para a transformada de Fourier foi aumentado a dimensão do array para aumentar a definição nas baixas frequências, onde a informação requerida para o reconhecimento pessoal é preponderante. Neste trabalho, o sistema foi implementado para garantir uma execução em tempo real. As amostras do sinal ECG não podem ser perdidas e o processo de autenticação tem que ser realizado de forma muito eficiente de modo a permitir o funcionamento em tempo real. Para isto é necessária a escolha de hardware capaz de concretizar este objetivo. A possibilidade do uso de um microprocessador foi descartada pela sua baixa versatilidade e alto custo de desenvolvimento. Os sistema ASIC e FPGA, também foram descartados pelos elevados custos de desenvolvimento e aquisição. Foi escolhido então, um sistema de desenvolvimento baseado num micro-controlador (MCU) com arquitetura ARM Cortex 4. O MCU escolhido, STM32F4-Discovery, conta com uma grande versatilidade, baixo consumo de energia (100mA), grande velocidade de processamento (168MHz), integração de DSP e unidade de virgula flutuante. Memoria interna não volátil também é necessária, a fim de conservar as características de treino de cada individuo. O sistema é projetado para ser autónomo, não-intrusivo e fácil de usar em diferentes cenários. Isto é conseguido combinando a facil utilização de apenas dois elétrodos, um em cada membro superior, com um sistema embebido alimentado por bateria com processamento em tempo real e capacidade de visualização de resultados. O sistema foi validado em duas fases. Em primeiro lugar os algoritmos foram validados usando uma base de dados já testada em estudos anteriores, e foi comprovado que o sistema tem uma percentagem de identificação de 89% e 10% de taxa de erros em autenticação. Finalmente foram realizadas novas aquisições que comprovaram a eficiência do sistema. Com 11 sujeitos na base de dados o sistema conta com uma taxa de identificação de 100% e um taxa de erros de autenticação de 9.3%. Utilizando as propriedades dos sinais ECG, este sistema torna-se um plataforma fiável, eficaz e eficiente. Problemas cardíacos humanos, como arritmias são um problema que fazem descer o rendimento do sistema. O sistema realizado é uma prova de conceito que ilustra como os sistemas embebidos podem mudar o mundo dos sistemas de autenticação pois proporcionam segurança e uma utilização muito fácil para toda a população.

Abstract: Traditional strategies for authentication are either entity-based or knowledge-based, like PIN numbers, passwords and ID cards. This raises serious security problems, concerning the risk of identity theft as these mechanisms are widely spread. They are a part of many daily tasks and they are dependent on objects or memories. This work prompts to change these mechanisms for a secure and ubiquitous biometric reckoning system based on the electrocardiographic (ECG) signal. It includes the study of all the steps required for the development of a biometric system, namely: acquisition, processing and classification. In the acquisition, the ECG signal is obtained from two electrodes placed at each limb to a electronic device that filters and amplifies the raw signal to be able to be converted to digital in the microcontroller, using the internal Analogue-to-Digital Converter; In the processing phase, the signal is digitally filtered and segmented in heartbeats. Features are selected and extracted using one algorithm created by Odinaka and herein modified to increase performance in low bandwidth ECG signals; In classification, extracted features are compared, using nearest neighbour algorithm, with data stored in the database in order to classify each heartbeat. The work develop and implement a working prototype based on an embedded system (ARMBased Cortex4 32 bit RISC STM32F407VGT6). Acquisition modules, processing units and algorithms are studied and developed on a prototype for identification and authentication mobile system based on the ECG. The lack of mobile real-time reckoning systems makes this thesis a challenging and self-motivated work. Unique, continuous acquisition and non-intrusive are the main characteristics of the ECG signals. These properties make ECG based reckoning system a reliable and effective platform. Preliminary evaluation showed a 100% identification rate and a 9.3% equal error rate at the authentication procedure. These results came form an acquired database of 11 subjects, with test and train sequences acquired in different procedures. Human heart problems, like arrhythmias are a challenging problem that drop the reckoning performance of the system. This kind of embedded solutions can change the world of authentication systems in order to provide security and be easy-to-use for the general population.

Identificador

MATOS, André Cigarro - Embedded platform for ECG biometric recognition. Lisboa: Instituto Superior de Engenharia de Lisboa, 2013. Dissertação de mestrado.

http://hdl.handle.net/10400.21/3296

201226570

Idioma(s)

eng

Direitos

openAccess

Palavras-Chave #Biometria #Sistemas biométricos #ECG #Biometrics #Biometric systems
Tipo

masterThesis

Publicador

Instituto Superior de Engenharia de Lisboa