10 resultados para Intelligent decision support systems
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
O trabalho que a seguir se apresenta tem como objectivo descrever a criação de um modelo que sirva de suporte a um sistema de apoio à decisão sobre o risco inerente à execução de projectos na área das Tecnologias de Informação (TI) recorrendo a técnicas de mineração de dados. Durante o ciclo de vida de um projecto, existem inúmeros factores que contribuem para o seu sucesso ou insucesso. A responsabilidade de monitorizar, antever e mitigar esses factores recai sobre o Gestor de Projecto. A gestão de projectos é uma tarefa difícil e dispendiosa, consome muitos recursos, depende de numerosas variáveis e, muitas vezes, até da própria experiência do Gestor de Projecto. Ao ser confrontado com as previsões de duração e de esforço para a execução de uma determinada tarefa, o Gestor de Projecto, exceptuando a sua percepção e intuição pessoal, não tem um modo objectivo de medir a plausibilidade dos valores que lhe são apresentados pelo eventual executor da tarefa. As referidas previsões são fundamentais para a organização, pois sobre elas são tomadas as decisões de planeamento global estratégico corporativo, de execução, de adiamento, de cancelamento, de adjudicação, de renegociação de âmbito, de adjudicação externa, entre outros. Esta propensão para o desvio, quando detectada numa fase inicial, pode ajudar a gerir melhor o risco associado à Gestão de Projectos. O sucesso de cada projecto terminado foi qualificado tendo em conta a ponderação de três factores: o desvio ao orçamentado, o desvio ao planeado e o desvio ao especificado. Analisando os projectos decorridos, e correlacionando alguns dos seus atributos com o seu grau de sucesso o modelo classifica, qualitativamente, um novo projecto quanto ao seu risco. Neste contexto o risco representa o grau de afastamento do projecto ao sucesso. Recorrendo a algoritmos de mineração de dados, tais como, árvores de classificação e redes neuronais, descreve-se o desenvolvimento de um modelo que suporta um sistema de apoio à decisão baseado na classificação de novos projectos. Os modelos são o resultado de um extensivo conjunto de testes de validação onde se procuram e refinam os indicadores que melhor caracterizam os atributos de um projecto e que mais influenciam o risco. Como suporte tecnológico para o desenvolvimento e teste foi utilizada a ferramenta Weka 3. Uma boa utilização do modelo proposto possibilitará a criação de planos de contingência mais detalhados e uma gestão mais próxima para projectos que apresentem uma maior propensão para o risco. Assim, o resultado final pretende constituir mais uma ferramenta à disposição do Gestor de Projecto.
Resumo:
One of the goals in the field of Music Information Retrieval is to obtain a measure of similarity between two musical recordings. Such a measure is at the core of automatic classification, query, and retrieval systems, which have become a necessity due to the ever increasing availability and size of musical databases. This paper proposes a method for calculating a similarity distance between two music signals. The method extracts a set of features from the audio recordings, models the features, and determines the distance between models. While further work is needed, preliminary results show that the proposed method has the potential to be used as a similarity measure for musical signals.
Resumo:
In this paper, a mixed-integer nonlinear approach is proposed to support decision-making for a hydro power producer, considering a head-dependent hydro chain. The aim is to maximize the profit of the hydro power producer from selling energy into the electric market. As a new contribution to earlier studies, a risk aversion criterion is taken into account, as well as head-dependency. The volatility of the expected profit is limited through the conditional value-at-risk (CVaR). The proposed approach has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems.
Resumo:
Within a large set of renewable energies being explored to tackle energy sourcing problems, bioenergy can represent an attractive solution if effectively managed. The supply chain design supported by mathematical programming can be used as a decision support tool to the successful bioenergy production systems establishment. This strategic decision problem is addressed in this paper where we intent to study the design of the residual forestry biomass to bioelectricity production in the Portuguese context. In order to contribute to attain better solutions a mixed integer linear programming (MILP) model is developed and applied in order to optimize the design and planning of the bioenergy supply chain. While minimizing the total supply chain cost the production energy facilities capacity and location are defined. The model also includes the optimal selection of biomass amounts and sources, the transportation modes selection, and links that must be established for biomass transportation and products delivers to markets. Results illustrate the positive contribution of the mathematical programming approach to achieve viable economic solutions. Sensitivity analysis on the most uncertain parameters was performed: biomass availability, transportation costs, fixed operating costs and investment costs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes
Resumo:
Dissertação Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica no perfil de Manutenção e Produção
Resumo:
In the actual world, the impact of the software buying decisions has a rising relevance in social and economic terms. This research tries to explain it focusing on the organizations buying decisions of Operating Systems and Office Suites for personal computers and the impact on the competition between incumbent and alternative players in the market in these software categories, although the research hypotheses and conclusions may extend to other software categories and platforms. We concluded that in this market beside brand image, product features or price, other factors could have influence in the buying choices. Network effect, switching costs, local network effect, lock-in or consumer heterogeneity all have influence in the buying decision, protecting the incumbent and making it difficult for the competitive alternatives, based mainly on product features and price, to gain market share to the incumbent. This happens in a stronger way in the Operating Systems category.
Resumo:
In this paper a new PCA-based positioning sensor and localization system for mobile robots to operate in unstructured environments (e. g. industry, services, domestic ...) is proposed and experimentally validated. The inexpensive positioning system resorts to principal component analysis (PCA) of images acquired by a video camera installed onboard, looking upwards to the ceiling. This solution has the advantage of avoiding the need of selecting and extracting features. The principal components of the acquired images are compared with previously registered images, stored in a reduced onboard image database, and the position measured is fused with odometry data. The optimal estimates of position and slippage are provided by Kalman filters, with global stable error dynamics. The experimental validation reported in this work focuses on the results of a set of experiments carried out in a real environment, where the robot travels along a lawn-mower trajectory. A small position error estimate with bounded co-variance was always observed, for arbitrarily long experiments, and slippage was estimated accurately in real time.
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica