21 resultados para Identification algorithms
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
Resumo:
Terrestrial remote sensing imagery involves the acquisition of information from the Earth's surface without physical contact with the area under study. Among the remote sensing modalities, hyperspectral imaging has recently emerged as a powerful passive technology. This technology has been widely used in the fields of urban and regional planning, water resource management, environmental monitoring, food safety, counterfeit drugs detection, oil spill and other types of chemical contamination detection, biological hazards prevention, and target detection for military and security purposes [2-9]. Hyperspectral sensors sample the reflected solar radiation from the Earth surface in the portion of the spectrum extending from the visible region through the near-infrared and mid-infrared (wavelengths between 0.3 and 2.5 µm) in hundreds of narrow (of the order of 10 nm) contiguous bands [10]. This high spectral resolution can be used for object detection and for discriminating between different objects based on their spectral xharacteristics [6]. However, this huge spectral resolution yields large amounts of data to be processed. For example, the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) [11] collects a 512 (along track) X 614 (across track) X 224 (bands) X 12 (bits) data cube in 5 s, corresponding to about 140 MBs. Similar data collection ratios are achieved by other spectrometers [12]. Such huge data volumes put stringent requirements on communications, storage, and processing. The problem of signal sbspace identification of hyperspectral data represents a crucial first step in many hypersctral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction (DR) yelding gains in data storage and retrieval and in computational time and complexity. Additionally, DR may also improve algorithms performance since it reduce data dimensionality without losses in the useful signal components. The computation of statistical estimates is a relevant example of the advantages of DR, since the number of samples required to obtain accurate estimates increases drastically with the dimmensionality of the data (Hughes phnomenon) [13].
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
O objectivo deste trabalho consiste em avaliar os benefícios das Self Organizing Networks (SON), no que concerne ao planeamento e optimização de redes Long Term Evolution (LTE), não só através do seu estudo, como também através do desenvolvimento e teste de algoritmos, que permitem avaliar o funcionamento de algumas das suas principais funções. O estudo efectuado sobre as SON permitiu identificar um conjunto de funções, tais como a atribuição automática de Physical Cell Id (PCI), o Automatic Neighbour Relation (ANR) e a optimização automática de parâmetros de handover, que permitem facilitar ou mesmo substituir algumas das tarefas mais comuns em planeamento e optimização de redes móveis celulares, em particular, redes LTE. Recorrendo a um simulador LTE destinado à investigação académica, em código aberto e desenvolvido em Matlab®, foi desenvolvido um conjunto de algoritmos que permitiram a implementação das funções em questão. Para além das funções implementadas, foram também introduzidas alterações que conferem a este simulador a capacidade de representar e simular redes reais, permitindo uma análise mais coerente dos algoritmos desenvolvidos. Os resultados obtidos, para além de evidenciarem claramente o benefício dos algoritmos desenvolvidos, foram ainda comparados com os obtidos pela ferramenta profissional de planeamento e optimização Atoll®, tendo-se verificado a franca proximidade de desempenho em algumas das funções. Finalmente, foi desenvolvida uma interface gráfica que permite o desenho, configuração e simulação de cenários, bem como a análise de resultados.
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
Preliminary version
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
This project was developed to fully assess the indoor air quality in archives and libraries from a fungal flora point of view. It uses classical methodologies such as traditional culture media – for the viable fungi – and modern molecular biology protocols, especially relevant to assess the non-viable fraction of the biological contaminants. Denaturing high-performance liquid chromatography (DHPLC) has emerged as an alternative to denaturing gradient gel electrophoresis (DGGE) and has already been applied to the study of a few bacterial communities. We propose the application of DHPLC to the study of fungal colonization on paper-based archive materials. This technology allows for the identification of each component of a mixture of fungi based on their genetic variation. In a highly complex mixture of microbial DNA this method can be used simply to study the population dynamics, and it also allows for sample fraction collection, which can, in many cases, be immediately sequenced, circumventing the need for cloning. Some examples of the methodological application are shown. Also applied is fragment length analysis for the study of mixed Candida samples. Both of these methods can later be applied in various fields, such as clinical and sand sample analysis. So far, the environmental analyses have been extremely useful to determine potentially pathogenic/toxinogenic fungi such as Stachybotrys sp., Aspergillus niger, Aspergillus fumigatus, and Fusarium sp. This work will hopefully lead to more accurate evaluation of environmental conditions for both human health and the preservation of documents.
Resumo:
This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques – forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT – and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques – f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART – were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose–volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.
Resumo:
We have identified an allelic deletion common region in the q26 region of chromosome 10 in endometrial carcinomas, which has been reported previously as a potential target of genetic alterations related to this neoplasia. An allelotyping analysis of 19 pairs of tumoral and non-tumoral samples was accomplished using seven microsatellite polymorphic markers mapping in the 10q26 chromosomal region. Loss of heterozygosity for one or more loci was detected in 29% of the endometrial carcinoma samples. The observed pattern of loss enabled the identification of a 3.5 Mb common deleted region located between the D10S587 and D10S186 markers. An additional result from an endometrial sample with evidence of a RER phenotype may suggest a more centromeric region of loss within the above-mentioned interval. This 401.84 Kb interval flanked by the D10S587 and D10S216 markers may be a plausible location for a putative suppressor gene involved in early stage endometrial carcinogenesis.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II
Resumo:
In this paper, we present a multilayer device based on a-Si:H/a-SiC:H that operates as photodetector and optical filter. The use of such device in protein detection applications is relevant in Fluorescence Resonance Energy Transfer (FRET) measurements. This method demands the detection of fluorescent signals located at specific wavelengths bands in the visible part of the electromagnetic spectrum. The device operates in the visible range with a selective sensitivity dependent on electrical and optical bias. Several nanosensors were tested with a commercial spectrophotometer to assess the performance of FRET signals using glucose solutions of different concentrations. The proposed device was used to demonstrate the possibility of FRET signals detection, using visible signals of similar wavelength and intensity. The device sensitivity was tuned to enhance the wavelength band of interest using steady state optical bias at 400 nm. Results show the ability of the device to detect signals in this range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Real structures can be thought as an assembly of components, as for instances plates, shells and beams. This later type of component is very commonly found in structures like frames which can involve a significant degree of complexity or as a reinforcement element of plates or shells. To obtain the desired mechanical behavior of these components or to improve their operating conditions when rehabilitating structures, one of the eventual parameters to consider for that purpose, when possible, is the location of the supports. In the present work, a beam-type structure is considered, and for a set of cases concerning different number and types of supports, as well as different load cases, the authors optimize the location of the supports in order to obtain minimum values of the maximum transverse deflection. The optimization processes are carried out using genetic algorithms. The results obtained, clearly show a good performance of the approach proposed. © 2014 IEEE.