36 resultados para Head cancer
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Terapia com Radiações.
Resumo:
Intensity Modulated Radiotherapy (IMRT) is a technique introduced to shape more precisely the dose distributions to the tumour, providing a higher dose escalation in the volume to irradiate and simultaneously decreasing the dose in the organs at risk which consequently reduces the treatment toxicity. This technique is widely used in prostate and head and neck (H&N) tumours. Given the complexity and the use of high doses in this technique it’s necessary to ensure as a safe and secure administration of the treatment, through the use of quality control programmes for IMRT. The purpose of this study was to evaluate statistically the quality control measurements that are made for the IMRT plans in prostate and H&N patients, before the beginning of the treatment, analysing their variations, the percentage of rejected and repeated measurements, the average, standard deviations and the proportion relations.
Resumo:
The big proliferation of mobile communication systems has caused an increased concern about the interaction between the human body and the antennas of mobile handsets. In order to study the problem, a multiband antenna was designed, fabricated and measured to operate over two frequency sub bands 900 and 1800 MHz. After that, we simulated the same antenna, but now, in the presence of a human head model to analyze the head's influence. First, the influence of the human head on the radiation efficiency of the antenna has been investigated as a function of the distance between the head and the antenna and with the inclination of the antenna. Furthermore, the relative amount of the electromagnetic power absorbed in the head has been obtained.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning head-dependent reservoirs under competitive environment. We propose a novel method, based on mixed-integer nonlinear programming (MINLP), for optimising power generation efficiency. This method considers hydroelectric power generation as a nonlinear function of water discharge and of the head. The main contribution of this paper is that discharge ramping constraints and start/stop of units are also considered, in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve two case studies based on Portuguese cascaded hydro systems, providing a higher profit at an acceptable computation time in comparison with classical optimisation methods based on mixed-integer linear programming (MILP).
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.
Resumo:
The big proliferation of mobile communication systems has caused an increased concern about the interaction between the human body and the antennas of mobile handsets. In order to study the problem, a multiband antenna was designed, fabricated and measured to operate over two frequency sub bands 900 and 1800 MHz. After that, we simulated the same antenna, but now, in the presence of a human head model to analyze the head's influence. First, the influence of the human head on the radiation efficiency of the antenna has been investigated as a function of the distance between the head and the antenna and with the inclination of the antenna. Furthermore, the relative amount of the electromagnetic power absorbed in the head has been obtained. In this study the electromagnetic analysis has been performed via FDTD (Finite Difference Time Domain).
Resumo:
This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.
Resumo:
This paper is on the problem of short-term hydro, scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach.
Resumo:
Introdução – Numa era em que os tratamentos de Radioterapia Externa (RTE) exigem cada vez mais precisão, a utilização de imagem médica permitirá medir, quantificar e avaliar o impacto do erro provocado pela execução do tratamento ou pelos movimentos dos órgãos. Objetivo – Analisar os dados existentes na literatura acerca de desvios de posicionamento (DP) em patologias de cabeça e pescoço (CP) e próstata, medidos com Cone Beam Computed Tomography (CBCT) ou Electronic Portal Image Device (EPID). Metodologia – Para esta revisão da literatura foram pesquisados artigos recorrendo às bases de dados MEDLINE/PubMed e b-on. Foram incluídos artigos que reportassem DP em patologias CP e próstata medidos através de CBCT e EPID. Seguidamente foram aplicados critérios de validação, que permitiram a seleção dos estudos. Resultados – Após a análise de 35 artigos foram incluídos 13 estudos e validados 9 estudos. Para tumores CP, a média (μ) dos DP encontra-se entre 0,0 e 1,2mm, com um desvio padrão (σ) máximo de 1,3mm. Para patologias de próstata observa-se μDP compreendido entre 0,0 e 7,1mm, com σ máximo de 7,5mm. Discussão/Conclusão – Os DP em patologias CP são atribuídos, maioritariamente, aos efeitos secundários da RTE, como mucosite e dor, que afetam a deglutição e conduzem ao emagrecimento, contribuindo para a instabilidade da posição do doente durante o tratamento, aumentando as incertezas de posicionamento. Os movimentos da próstata devem-se principalmente às variações de preenchimento vesical, retal e gás intestinal. O desconhecimento dos DP afeta negativamente a precisão da RTE. É importante detetá-los e quantificá-los para calcular margens adequadas e a magnitude dos erros, aumentando a precisão da administração de RTE, incluindo o aumento da segurança do doente. - ABSTRACT - Background and Purpose – In an era where precision is an increasing necessity in external radiotherapy (RT), modern medical imaging techniques provide means for measuring, quantifying and evaluating the impact of treatment execution and movement error. The aim of this paper is to review the current literature on the quantification of setup deviations (SD) in patients with head and neck (H&N) or prostate tumors, using Cone Beam Computed Tomography (CBCT) or Electronic Portal Image Device (EPID). Methods – According to the study protocol, MEDLINE/PubMed and b-on databases were searched for trials, which were analyzed using selection criteria based on the quality of the articles. Results – After assessment of 35 papers, 13 studies were included in this analysis and nine were authenticated (6 for prostate and 3 for H&N tumors). The SD in the treatment of H&N cancer patients is in the interval of 0.1 to 1.2mm, whereas in prostate cancer this interval is 0.0 to 7.1mm. Discussion – The reproducibility of patient positioning is the biggest barrier for higher precision in RT, which is affected by geometrical uncertainty, positioning errors and inter or intra-fraction organ movement. There are random and systematic errors associated to patient positioning, introduced since the treatment planning phase or through physiological organ movement. Conclusion – The H&N SD are mostly assigned to the Radiotherapy adverse effects, like mucositis and pain, which affect swallowing and decrease secretions, contributing for the instability of patient positioning during RT treatment and increasing positioning uncertainties. Prostate motion is mainly related to the variation in bladder and rectal filling. Ignoring SD affects negatively the accuracy of RT. Therefore, detection and quantification of SD is crucial in order to calculate appropriate margins, the magnitude of error and to improve accuracy in RTE and patient safety.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde.
Resumo:
Since last decade, the debate on the parameter which reflects prostate cancer sensitivity to fractionation in a radiotherapy treatment, the α/β, has become extensive. Unlike most tumors, the low labeling indices (LI) and large potential doubling time that characterize the prostate tumor led some authors to consider that it may behave as a late responding tissue. So far, the existing studies with regard to this subject point to a low value of α/β, around 2.7 Gy, which may be considered as a therapeutic gain in relation to surrounding normal tissues by using fewer and larger fractions. The aim of this paper is to review several estimates that have been made in the last few years regarding the prostate cancer α/β both from clinical and experimental data, as well as the set of factors that have potentially influenced these evaluations.
Resumo:
Will the existing means in Radiotherapy respond to the needs of the potential user population in 2014 for Lisbon and Santarém districts? Number of treatment units? Number of Radiotherapy Technologists? Temporal variations of the dimension and age structure of the populations: Coastal areas/Interior areas, Urban areas/Rural areas. Temporal variations in the incidence of several types of cancer. Overall objectives: evaluate of the necessities of Radiotherapy for Lisbon and Santarém districts in 2014 and elaboration of proposals that aim the access/use for the potential user population.
Resumo:
Objective: To evaluate the influence of Everolimus (RAD001) on chemically induced urothelial lesions in mice and its influence on in vitro human bladder cancer cell lines. Methods: ICR male mice were given N-butyl-N-(4-hydroxybutyl) nitrosamine in drinking water for a period of 12 weeks. Subsequently, RAD001 was administered via oral gavage, for 6 weeks. At the end of the experiment, all the animals were sacrificed and tumor development was determined by means of histopathologic evaluation; mammalian target of rapamycin (mTOR) expressivity was evaluated by immunohistochemistry. Three human bladder cancer cell lines (T24, HT1376, and 5637) were treated using a range of RAD001 concentrations. MTT assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and flow cytometry were used to assess cell proliferation, apoptosis index, and cell cycle analysis, respectively. Immunoblotting analysis of 3 cell line extracts using mTOR and Akt antibodies was performed in order to study the expression of Akt and mTOR proteins and their phosphorylated forms. Results: The incidence of urothelial lesions in animals treated with RAD001 was similar to those animals not treated. RAD001 did not block T24 and HT1376 cell proliferation or induce apoptosis. A reduction in cell proliferation rate and therefore G0/G1 phase arrest, as well as a statistically significant induction of apoptosis (P 0.001), was only observed in the 5637 cell line. Conclusion: RAD001 seems not to have a significant effect on chemically induced murine bladder tumors. The effect of RAD001 on tumor proliferation and apoptosis was achieved only in superficial derived bladder cancer cell line, no effect was observed in invasive cell lines.
Resumo:
Purpose/Objective: The purpose of this work was to determine biologically equivalent alternative regimens for the treatment of prostate cancer using External Beam Radiotherapy (EBRT) and Low Dose-Rate Brachytherapy (LDRBT) with 125I implants and to evaluate the sensitivity of these regimens to different sets of radiobiological parameters of the Linear-Quadratic (LQ) model.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.