14 resultados para Enterobacterial repetitive intergenic consensus- polymerase chain reaction
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In the management of solid waste, pollutants over a wide range are released with different routes of exposure for workers. The potential for synergism among the pollutants raises concerns about potential adverse health effects, and there are still many uncertainties involved in exposure assessment. In this study, conventional (culture-based) and molecular real-time polymerase chain reaction (RTPCR) methodologies were used to assess fungal air contamination in a waste-sorting plant which focused on the presence of three potential pathogenic/toxigenic fungal species: Aspergillus flavus, A. fumigatus, and Stachybotrys chartarum. In addition, microbial volatile organic compounds (MVOC) were measured by photoionization detection. For all analysis, samplings were performed at five different workstations inside the facilities and also outdoors as a reference. Penicillium sp. were the most common species found at all plant locations. Pathogenic/toxigenic species (A. fumigatus and S. chartarum) were detected at two different workstations by RTPCR but not by culture-based techniques. MVOC concentration indoors ranged between 0 and 8.9 ppm (average 5.3 ± 3.16 ppm). Our results illustrated the advantage of combining both conventional and molecular methodologies in fungal exposure assessment. Together with MVOC analyses in indoor air, data obtained allow for a more precise evaluation of potential health risks associated with bioaerosol exposure. Consequently, with this knowledge, strategies may be developed for effective protection of the workers.
Resumo:
Background: There are now several lines of evidence to suggest that protein synthesis and translation factors are involved in the regulation of cell proliferation and cancer development. Aims: To investigate gene expression patterns of eukaryotic releasing factor 3 (eRF3) in gastric cancer. Methods: RNA was prepared from 25 gastric tumour biopsies and adjacent non-neoplastic mucosa. Real time TaqMan reverse transcription polymerase chain reaction (RT-PCR) was performed to measure the relative gene expression levels. DNA was isolated from tumour and normal tissues and gene dosage was determined by a quantitative real time PCR using SYBR Green dye. Results: Different histological types of gastric tumours were analysed and nine of the 25 tumours revealed eRF3/GSPT1 overexpression; moreover, eight of the 12 intestinal type carcinomas analysed overexpressed the gene, whereas eRF3/GSPT1 was overexpressed in only one of the 10 diffuse type carcinomas (Kruskal-Wallis Test; p , 0.05). No correlation was found between ploidy and transcript expression levels of eRF3/GSPT1. Overexpression of eRF3/GSPT1 was not associated with increased translation rates because the upregulation of eRF3/GSPT1 did not correlate with increased eRF1 levels. Conclusions: Overexpression of eRF3/GSPT1 in intestinal type gastric tumours may lead to an increase in the translation efficiency of specific oncogenic transcripts. Alternatively, eRF3/GSPT1 may be involved in tumorigenesis as a result of its non-translational roles, namely (dis)regulating the cell cycle, apoptosis, or transcription.
Resumo:
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Resumo:
Background: The eukaryotic release factor 3 (eRF3) has been shown to affect both tubulin and actin cytoskeleton, suggesting a role in cytoskeleton assembly, mitotic spindle formation and chromosome segregation. Also, direct interactions between eRF3 and subunits of the cytosolic chaperonin CCT have been described. Moreover, both eRF3a and CCT subunits have been described to be up-regulated in cancer tissues. Our aim was to evaluate the hypothesis that eRF3 expression levels are correlated with the expression of genes encoding proteins involved in the tubulin folding pathways. Methods: Relative expression levels of eRF1, eRF3a/GSPT1, PFDN4, CCT2, CCT4, and TBCA genes in tumour samples relative to their adjacent normal tissues were investigated using real time-polymerase chain reaction in 20 gastric cancer patients. Results: The expression levels of eRF3a/GSPT1 were not correlated with the expression levels of the other genes studied. However, significant correlations were detected between the other genes, both within intestinal and diffuse type tumours. Conclusions: eRF3a/GSPT1 expression at the mRNA level is independent from both cell translation rates and from the expression of the genes involved in tubulin-folding pathways. The differences in the patterns of expression of the genes studied support the hypothesis of genetically independent pathways in the origin of intestinal and diffuse type gastric tumours.
Resumo:
Background & aims: Crohn’s disease (CD) is a multifactorial disease where resistance to apoptosis is one major defect. Also, dietary fat intake has been shown to modulate disease activity. We aimed to explore the interaction between four single nucleotide polymorphisms (SNPs) in apoptotic genes and dietary fat intake in modulating disease activity in CD patients. Methods: Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism (RFLP) techniques were used to analyze Caspase9þ93C/T, FasLigand-843C/T, Peroxisome Proliferator-Activated Receptor gammaþ161C/T and Peroxisome Proliferator-Activated Receptor gamma Pro12Ala SNPs in 99 patients with CD and 116 healthy controls. Interactions between SNPs and fat intake in modulating disease activity were analyzed using regression analysis. Results: None of the polymorphisms analyzed influenced disease susceptibility and/or activity, but a high intake of total, saturated and monounsaturated fats and a higher ratio of n-6/n-3 polyunsaturated fatty acids (PUFA), was associated with a more active phenotype (p < 0.05). We observed that the detrimental effect of a high intake of total and trans fat was more marked in wild type carriers of the Caspase9þ93C/T polymorphism [O.R (95%CI) 4.64 (1.27e16.89) and O.R (95%CI) 4.84 (1.34e17.50)]. In the Peroxisome Proliferator-Activated Receptor gamma Pro12Ala SNP, we also observed that a high intake of saturated and monounsaturated fat was associated to a more active disease in wild type carriers [OR (95%CI) 4.21 (1.33e13.26) and 4.37 (1.52e12.51)]. Finally, a high intake of n-6 PUFA was associated with a more active disease in wild type carriers for the FasLigand-843C/T polymorphism [O.R (95%CI) 5.15 (1.07e24.74)]. Conclusions: To our knowledge, this is the first study to disclose a synergism between fat intake and SNPs in apoptotic genes in modulating disease activity in CD patients.
Resumo:
Introduction - Obesity became a major public health problem as a result of its increasing prevalence worldwide. Paraoxonase-1 (PON1) is an esterase able to protect membranes and lipoproteins from oxidative modifications. At the PON1 gene, several polymorphisms in the promoter and coding regions have been identified. The aims of this study were i) to assess PON1 L55M and Q192R polymorphisms as a risk factor for obesity in women; ii) to compare PON1 activity according to the expression of each allele in L55M and Q192R polymorphisms; iii) to compare PON1 activity between obese and normal-weight women. Materials and methods - We studied 75 healthy (35.9±8.2 years) and 81 obese women (34.3±8.2 years). Inclusion criteria for obese subjects were body mass index ≥30 kg/m2 and absence of inflammatory/neoplasic conditions or kidney/hepatic dysfunction. The two PON1 polymorphisms were assessed by real-time PCR with TaqMan probes. PON1 enzymatic activity was assessed by spectrophotometric methods, using paraoxon as a substrate. Results - No significant differences were found for PON1 activity between normal and obese women. Nevertheless, PON1 activity was greater (P<0.01) for the RR genotype (in Q192R polymorphism) and for the LL genotype (in L55M polymorphism). The frequency of allele R of Q192R polymorphism was significantly higher in obese women (P<0.05) and was associated with an increased risk of obesity (odds ratio=2.0 – 95% confidence interval (1.04; 3.87)). Conclusion - 55M and Q192R polymorphisms influence PON1 activity. The allele R of the Q192R polymorphism is associated with an increased risk for development of obesity among Portuguese Caucasian premenopausal women.
Resumo:
Background: CDC25 phosphatases control cell cycle progression by activating cyclin dependent kinases. The three CDC25 isoforms encoding genes are submitted to alternative splicing events which generate at least two variants for CDC25A and five for both CDC25B and CDC25C. An over-expression of CDC25 was reported in several types of cancer, including breast cancer, and is often associated with a poor prognosis. Nevertheless, most of the previous studies did not address the expression of CDC25 splice variants. Here, we evaluated CDC25 spliced transcripts expression in anti-cancerous drug-sensitive and resistant breast cancer cell lines in order to identify potential breast cancer biomarkers. Methods: CDC25 splice variants mRNA levels were evaluated by semi-quantitative RT-PCR and by an original real-time RT-PCR assay. Results: CDC25 spliced transcripts are differentially expres-sed in the breast cancer cell lines studied. An up-regulation of CDC25A2 variant and an increase of the CDC25C5/C1 ratio are associated to the multidrug-resistance in VCREMS and DOXOR breast cancer cells, compared to their sensitive counterpart cell line MCF-7. Additionally, CDC25B2 tran-script is exclusively over-expressed in VCREMS resistant cells and could therefore be involved in the development of certain type of drug resistance. Conclusions: CDC25 splice variants could represent interesting potential breast cancer prognostic biomarkers.
Resumo:
The human eukaryotic release factor 3a (eRF3a), encoded by the G1 to S phase transition 1 gene (GSPT1; alias eRF3a), is upregulated in various human cancers. GSPT1 contains a GGCn polymorphism in exon 1, encoding a polyglycine expansion in the N-terminal of the protein. The longer allele, GGC12, was previously shown to be associated to cancer. The GGC12 allele was present in 2.2% of colorectal cancer patients but was absent in Crohn disease patients and in the control group. Real-time quantitative RT-PCR analysis showed that the GGC12 allele was present at up to 10-fold higher transcription levels than the GGC10 allele (P < 0.001). No GSPT1 amplifications were detected, and there was no correlation between the length of the alleles and methylation levels of the CpG sites inside the GGC expansion. Using flow cytometry, we compared the levels of apoptosis and proliferation rates between cell lines with different genotypes, but detected no significant differences. Finally, we used a cytokinesis-block micronucleus assay to evaluate the frequency of micronuclei in the same cell lines. Cell lines with the longer alleles had higher frequencies of micronuclei in binucleated cells, which is probably a result of defects in mitotic spindle formation. Altogether, these findings indicate that GSPT1 should be considered a potential proto-oncogene.
Resumo:
The histone deacetylase inhibitors sodium butyrate (NaBu) and trichostatin A (TSA) exhibit anti-proliferative activity by causing cell cycle arrest and apoptosis. The mechanisms by which NaBu and TSA cause apoptosis and cell cycle arrest are not yet completely clarified, although these agents are known to modulate the expression of several genes including cell-cycle- and apoptosis-related genes. The enzymes involved in the process of translation have important roles in controlling cell growth and apoptosis, and several of these translation factors have been described as having a causal role in the development of cancer. The expression patterns of the translation mechanism, namely of the elongation factors eEF1A1 and eEF1A2, and of the termination factors eRF1 and eRF3, were studied in the breast cancer cell line MCF-7 by real-time quantitative reverse transcription-polymerase chain reaction after a 24-h treatment with NaBu and TSA. NaBu induced inhibition of translation factors' transcription, whereas TSA caused an increase in mRNA levels. Thus, these two agents may modulate the expression of translation factors through different pathways. We propose that the inhibition caused by NaBu may, in part, be responsible for the cell cycle arrest and apoptosis induced by this agent in MCF-7 cells.
Resumo:
Six open reading frames (ORFs) located on chromosome VII of Saccharomyces cerevisiae (YGR205w, YGR210c, YGR211w, YGR241c, YGR243w and YGR244c) were disrupted in two different genetic backgrounds using short-flanking homology (SFH) gene replacement. Sporulation and tetrad analysis showed that YGR211w, recently identified as the yeast ZPR1 gene, is an essential gene. The other five genes are non-essential, and no phenotypes could be associated to their inactivation. Two of these genes have recently been further characterized: YGR241c (YAP1802) encodes a yeast adaptor protein and YGR244c (LSC2) encodes the b-subunit of the succinyl-CoA ligase. For each ORF, a replacement cassette with long flanking regions homologous to the target locus was cloned in pUG7, and the cognate wild-type gene was cloned in pRS416.
Resumo:
The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial underground plant. Stachybotrys chartarum was not detected in any of the samples analyzed. The distribution of particle sizes showed the same tendency in both plants; however, the partially underground plant presented higher levels of contamination, except for PM2.5. Fungal contamination assessment is crucial to evaluating the potential health risks to exposed workers in these settings. In order to achieve an evaluation of potential health risks to exposed workers, it is essential to combine conventional and molecular methods for fungal detection. Protective measures to minimize worker exposure to fungi need to be adopted since wastewater is the predominant internal fungal source in this setting.
Resumo:
Organic waste is a rich substrate for microbial growth, and because of that, workers from waste industry are at higher risk of exposure to bioaerosols. This study aimed to assess fungal contamination in two plants handling solid waste management. Air samples from the two plants were collected through an impaction method. Surface samples were also collected by swabbing surfaces of the same indoor sites. All collected samples were incubated at 27◦C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. Air samples were also subjected to molecular methods by real-time polymerase chain reaction (RT PCR) using an impinger method to measure DNA of Aspergillus flavus complex and Stachybotrys chartarum. Assessment of particulate matter (PM) was also conducted with portable direct-reading equipment. Particles concentration measurement was performed at five different sizes (PM0.5; PM1; PM2.5; PM5; PM10). With respect to the waste sorting plant, three species more frequently isolated in air and surfaces were A. niger (73.9%; 66.1%), A. fumigatus (16%; 13.8%), and A. flavus (8.7%; 14.2%). In the incineration plant, the most prevalent species detected in air samples were Penicillium sp. (62.9%), A. fumigatus (18%), and A. flavus (6%), while the most frequently isolated in surface samples were Penicillium sp. (57.5%), A. fumigatus (22.3%) and A. niger (12.8%). Stachybotrys chartarum and other toxinogenic strains from A. flavus complex were not detected. The most common PM sizes obtained were the PM10 and PM5 (inhalable fraction). Since waste is the main internal fungal source in the analyzed settings, preventive and protective measures need to be maintained to avoid worker exposure to fungi and their metabolites.
Resumo:
Individuals spend 80-90% of their day indoors and elderly subjects are likely to spend even a greater amount of time indoors. Thus, indoor air pollutants such as bioaerosols may exert a significant impact on this age group. The aim of this study was to characterize fungal contamination within Portuguese elderly care centers. Fungi were measured using conventional as well as molecular methods in bedrooms, living rooms, canteens, storage areas, and outdoors. Bioaerosols were evaluated before and after the microenvironments' occupancy in order to understand the role played by occupancy in fungal contamination. Fungal load results varied from 32 colony-forming units CFU m(-3) in bedrooms to 228 CFU m(-3) in storage areas. Penicillium sp. was the most frequently isolated (38.1%), followed by Aspergillus sp. (16.3%) and Chrysonilia sp. (4.2%). With respect to Aspergillus genus, three different fungal species in indoor air were detected, with A. candidus (62.5%) the most prevalent. On surfaces, 40 different fungal species were isolated and the most frequent was Penicillium sp. (22.2%), followed by Aspergillus sp. (17.3%). Real-time polymerase chain reaction did not detect the presence of A. fumigatus complex. Species from Penicillium and Aspergillus genera were the most abundant in air and surfaces. The species A. fumigatus was present in 12.5% of all indoor microenvironments assessed. The living room was the indoor microenvironment with lowest fungal concentration and the storage area was highest.
Resumo:
Filamentous fungi from genus Aspergillus were previously detected in wastewater treatment plants (WWTP) as being Aspergillus flavus (A. flavus), an important toxigenic fungus producing aflatoxins. This study aimed to determine occupational exposure adverse effects due to fungal contamination produced by A. flavus complex in two Portuguese WWTP using conventional and molecular methodologies. Air samples from two WWTP were collected at 1 m height through impaction method. Surface samples were collected by swabbing surfaces of the same indoor sites. After counting A. flavus and identification, detection of aflatoxin production was ensured through inoculation of seven inoculates in coconut-milk agar. Plates were examined under long-wave ultraviolet (UV; 365 nm) illumination to search for the presence of fluorescence in the growing colonies. To apply molecular methods, air samples were also collected using the impinger method. Samples were collected and collection liquid was subsequently used for DNA extraction. Molecular identification of A. flavus was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR detection system (Corbett). Among the Aspergillus genus, the species that were more abundant in air samples from both WWTP were Aspergillus versicolor (38%), Aspergillus candidus (29.1%), and Aspergillus sydowii (12.7%). However, the most commonly species found on surfaces were A. flavus (47.3%), Aspergillus fumigatus (34.4%), and Aspergillus sydowii (10.8%). Aspergillus flavus isolates that were inoculated in coconut agar medium were not identified as toxigenic strains and were not detected by RT-PCR in any of the analyzed samples from both plants. Data in this study indicate the need for monitoring fungal contamination in this setting. Although toxigenic strains were not detected from A. flavus complex, one cannot disregard the eventual presence and potential toxicity of aflatoxins.