151 resultados para nascimento


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em TEATRO - especialização em Artes Performativas (Teatro-Música).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de projecto, conducente à obtenção do grau de mestre em Teatro – especialização Encenação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projecto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Encenação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A estória de Édipo, da Mitologia Grega, constitui uma das mais importantes obras da história mundial. Além de nos ser apresentada por diversos escritores, traz à tona arquétipos com os quais lidamos hoje também no universo psicanalítico. A representação da estória em teatro desperta no espectador não somente o prazer da estética, mas também a reflexão sobre a condição humana. O presente trabalho tem por condão abordar o tema de forma actual, através da visão da escritora portuguesa Natália Correia, constituindo este trabalho a complementação da peça de teatro encenada no ano de 2009 por nós. Neste Édipo, o poder patriarcal inserido pela maioria dos escritores é retratado como um poder matriarcal, transgressor e feminino.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho escrito visa relatar a experiência vivenciada com o Grupo de Teatro Terapêutico do Júlio de Matos do Centro Hospitalar Psiquiátrico de Lisboa na preparação de um espectáculo de teatro pelo grupo. Nele vêm-se descritas as actividades referentes ao levantamento do trabalho teatral com um grupo de pessoas com diagnóstico psiquiátrico e ligadas a uma instituição hospitalar, e são referenciadas as práticas e teorias terapêuticas que são associadas à dinamização do grupo. Terminando com a reflexão sobre a componente terapêutica indissociável à natureza do processo artístico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de Estágio submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Artes Performativas (Interpretação).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de Estágio Curricular para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de mestre em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).