106 resultados para Customer order decoupling point
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Trabalho Final de Mestrado para obtenção de grau de Mestre em Engenharia Mecânica na Especialidade de Manutenção e Produção
Resumo:
Dissertation elaborated for the partial fulfilment of the requirements of the Master Degree in Civil Engineering in the Speciality Area of Hydarulics
Resumo:
Relatório de estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino da Educação Visual e Tecnológica no Ensino Básico
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre Em Engenharia Química e Biológica Ramo de processos Químicos
Resumo:
I - As minhas expectativas eram elevadas pois este regresso à Escola Superior de Música de Lisboa permitia-me voltar a trabalhar com os professores que me formaram como músico e professor e com eles poder actualizar-me sobre vários temas ligados à pedagogia. Este aspecto é muito importante pois chego à conclusão que o tempo por vezes provoca-nos excesso de confiança que parece “cegar-nos” não nos deixando ver erros pedagógicos muitas vezes evitáveis. Quando ingressei neste estágio sentia-me confiante e seguro quanto às minhas capacidades como professor. O momento de viragem na minha perspectiva do estágio dá-se quando surgem as observações/gravações e respectivas análises e reflexões das aulas. Procurei trabalhar nessas aulas da forma mais natural possível pois o meu objectivo era observar o meu trabalho diário. A primeira observação das aulas permitiu-me anotar algumas coisas menos boas. Contudo, quando essa observação foi feita com o professor de didática os aspectos menos positivos ganharam uma enorme proporção: (1) falhas ao nível da instrução: demasiado longo, (2) feedback de pouca qualidade ou eficácia , (3) pouca percentagem de alunos que atingiam os objectivos., (4) ritmo de aula por vezes baixo devido a períodos longos de instrução ou devido a uma má gestão do espaço. Todos estes problemas eram mais visíveis quando as turmas eram maiores. Ao longo do estágio, e após a detecção destas falhas, fui procurando evitar estas práticas em todas as turmas onde leccionava. Senti que o ritmo de aula aumentou substancialmente não apenas à custa da energia do professor e de boas estratégias mas porque sobretudo se “falava menos e trabalhava-se mais”. Os erros dos alunos passaram a ser corrigos enquanto trabalhavam (feedback corretivo próximo do momento positivo ou negativo), o feedback positivo passou a ser mais destacado, a disposição da sala alterou-se de forma aos alunos estarem mais perto do professor, e este procurou ser menos “criativo” no momento de alterar o plano de aula devido a ideias momentâneas o que provocou mais tempo para cada estratégia e para que mais alunos fossem atingindo os objectivos. Apesar da evolução no sentido de proporcionar aos alunos aulas mais rentáveis e de ainda melhor qualidade, existe a consciência que alguns dos erros cometidos eram hábitos e como tal poderão levar algum tempo a ser corrigidos. Contudo, existe a consciência e a vontade em debelá-los da minha prática docente.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
Relatório de estágio apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Gestão Estratégica das Relações Públicas.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
Duchenne muscular dystrophy (DMD) is a severe, progressive disease first described by Meryon in 1852 and later by Guillaume Duchene. It is the most common and severe form of childhood muscular dystrophy, affecting 1 in 3500 live male births. Is caused by an X—linked recessive genetic disorder resulting in a deficiency of the dystrophin protein, responsible for linking contractile proteins to the sarcolemma. Diagnosis is not always easy and the first symptoms are often related to weakness and difficulty or delay in acquiring the ability to perform simple activities. Progressive weakness leads to the use of compensatory strategies in order to maintain the ability to walk and perform other activities. Respiratory muscles are also affected and the complications resulting from its impairments are frequently the cause of early death of these patients. The advances in DMD management has increased life expectancy of these children with the need for adequate care in adulthood. DMD manifestations include muscle weakness, contractures, respiratory and cardiac complications. Some authors also refer that one-third of patients have difficulties with learning and delayed global development because the gene that encodes dystrophyn expresses various dystrophin isoforms that are found in Schwann and Purkinje celis in the brain. Body functions and structure impairments like muscle weakness, contractures and reduced range of motion lead to limitations in activities, i.e., impairments affect the performance of tasks by the individual. In a physiotherapist’s point of view analysing these limitations is mandatory because physiotherapy’s final purpose is to restore or preserve the ability to perform ADL and to improve quality of life.
Resumo:
Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.