38 resultados para Nickel catalysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrotris(pyrazol-1-yl)methane iron(II) complex [FeCl2{eta(3)-HC(pz)(3)}] (Fe, pz = pyrazol-1-yl) immobilized on commercial (MOR) or desilicated (MOR-D) zeolite, catalyses the oxidation of cyclohexane with hydrogen peroxide to cyclohexanol and cyclohexanone, under mild conditions. MOR-D/Fe (desilicated zeolite supported [FeCl2{eta(3)-HC(pz)(3)}] complex) provides an outstanding catalytic activity (TON up to 2.90 x 10(3)) with the concomitant overall yield of 38%, and can be easy recovered and reused. The MOR or MOR-D supported hydrotris(pyrazol-1-yl)methane iron(II) complex (MOR/Fe and MOR-D/Fe, respectively) was characterized by X-ray powder diffraction, ICP-AES, and TEM studies as well as by IR spectroscopy and N-2 adsorption at -196 degrees C. The catalytic operational conditions (e.g., reaction time, type and amount of oxidant, presence of acid and type of solvent) were optimized. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel production from semi-refined oils (SRO) and waste frying oils (WFO) was studied using commercial CaO as heterogeneous catalyst. The methanolysis tests were carried out in mild reaction conditions (62 A degrees C, atmospheric pressure). With such conditions, SRO (soybean and rapeseed) allowed to produce a biodiesel containing 97-98 % of methyl esters (FAME), whereas WFO only provided 86-87 % of FAME. The lower FAME yield for WFO oil is ascribable to the partial neutralization of the catalyst by free fatty acids. Also, soaps formation from the WFO oil reduced the weight yield of the oil phase (containing FAME) obtained and increased the MONG content of the glycerin phase. The catalysts stability tests showed high stability even when WFO oil was processed. Catalytic tests performed with blends of WFO/semi-refined oils showed blending as a good strategy to process low value raw oils with minor decay of the catalyst performance. Both WFO and semi-refined oils showed S-shape kinetics curves thus discarding significant differences of the reaction mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold(III) complexes of type [AuCl2{eta(2)-RC(R'pz)(3)}]Cl [R = R' = H (1), R = CH2OH, R' = H (2) and R = H, R' = 3,5-Me-2(3), pz = pyrazol-1-yl] were supported on carbon materials (activated carbon, carbon xerogel and carbon nanotubes) and used for the oxidation of cyclohexane to cyclohexanol and cyclohexanone, with aqueous H2O2, under mild conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel production by methanolysis of semi-refined rapeseed oil was studied over lime based catalysts. In order to improve the catalysts basicity a commercial CaO material was impregnated with aqueous solution of lithium nitrate (Li/Ca = 03 atomic ratio). The catalysts were calcined at 575 degrees C and 800 degrees C, for 5 h, to remove nitrate ions before reaction. The XRD patterns of the fresh catalysts, including the bare CaO, showed lines ascribable to CaO and Ca(OH)(2). The absence of XRD lines belonging to Li phases confirms the efficient dispersion of Li over CaO. In the tested condition (W-cat/W-oil = 5%; CH3OH/oil = 12 molar ratio) all the fresh catalysts provided similar biodiesel yields (FAME >93% after 4 h) but the bare CaO catalyst was more stable. The activity decay of the Li modified samples can be related to the enhanced, by the higher basicity, calcium diglyceroxide formation during methanolysis which promotes calcium leaching. The calcination temperature for Li modified catalysts plays an important role since encourages the crystals sinterization which appears to improve the catalyst stability. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifunctional Pt-HMOR catalysts were prepared by incipient wetness impregnation of various desilicated MOR obtained by alkaline treatment using NaOH concentrations ranging from 0.1 to 0.5 M. The zeolite structural changes upon modification were investigated by several techniques including powder X-ray diffraction,Al-27 and Si-29 MAS-NMR spectroscopy, N-2 adsorption, pyridine adsorption followed by infrared spectroscopy and the catalytic model reaction of m-xylene transformation. For low alkaline concentration the zeolite acidity is preserved, along with a slight increase of the volume correspondent to the larger micropores due to the removal of extra-framework debris already existent at the parent zeolite. At higher NaOH concentrations there is a significant loss of crystalinity and acidity as well as the formation of mesoporosity. The characterization of the metal function shows similar patterns for Pt-HMOR and Pt-M/0.1 samples, with Pt particles located mainly inside the inner porosity. In contrast, large Pt particles become visible at the intercrystalline mesoporosity of MOR crystals developed during the desilication treatments at severe alkaline conditions. The catalytic results obtained for n-hexane hydroisomerization showed an improved selectivity for dibranched over monobranched isomers for Pt-M/0.1 sample, likely due to the preservation of the support acidity and the slight enlargement of the micropores. This work is a new example in which the mesoporous development does not improve the catalytic efficiency of the zeolites, whereas mild alkaline desilication might be considered as an effective solution to produce customized catalysts with enhanced performance for a given application. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hierarchical SAPO-11 was synthesized using a commercial Merck carbon as template. Oxidant acid treatments were performed on the carbon matrix in order to investigate its influence on the properties of SAPO-11. Structural, textural and acidic properties of the different materials were evaluated by XRD, SEM, N-2 adsorption, pyridine adsorption followed by IR spectroscopy and thermal analyses. The catalytic behavior of the materials (with 0.5 wt.% Pt, introduced by mechanic mixture with Pt/Al2O3), were studied in the hydroisomerization of n-decane. The hierarchical samples showed higher yields in monobranched isomers than typical microporous SAPO-11, as a direct consequence of the modification on both porosity and acidity, the later one being the most predominant. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

fac-[MBr(CO)(3)(pypzH)] (M = Mn, Re; pypzH = (3-(2-pyridyl) pyrazole) complexes are prepared from fac[ MBr(CO)(3)(NCMe)(2)] and pypzH. The result of their deprotonation depends on the metallic substrate: the rhenium complex affords cleanly the bimetallic compound [fac-{Re(CO)(3)(mu(2)-pypz)}] 2 (mu(2)-pypz = mu(2)-3-(2pyridyl-. 1N) pyrazolate-2. 1N), which was crystallographically characterized, whereas a similar manganese complex was not detected. When two equivalents of pyridylpyrazolate are used, polymetallic species [fac-M(CO) 3(mu(2)-pypz)(mu(3)-pypz) M'] (mu(3)-pypz = mu(3)-3-(2-pyridyl-kappa N-1) pyrazolate-1 kappa 2N, N: 2. 1N:; M = Mn, M' = Li, Na, K; M = Re, M' = Na) are obtained. The crystal structures of the manganese carbonylate complexes were determined. The lithium complex is a monomer containing one manganese and one lithium atom, whereas the sodium and potassium complexes are dimers and reveal an unprecedented coordination mode for the bridging 3-(2-pyridyl) pyrazolate ligand, where the nitrogen of the pyridyl fragment and the nitrogen-1 of pyrazolate are chelated to manganese atoms, and each nitrogen-2 of pyrazolate is coordinated to two alkaline atoms. The polymetallic carbonylate complexes are unstable in solution and evolve spontaneously to [fac-{Re(CO) 3(mu(2)-pypz)}](2) or to the trimetallic paramagnetic species [MnII(mu(2)-pypz) 2{fac-{MnI(CO) 3(mu(2)-pypz)}(2)}]. The related complex cis-[MnCl2(pypzH)(2)] was also synthesized and structurally characterized. The electrochemical behavior of the new homo-and heteropolymetallic 3-(2-pyridyl) pyrazolate complexes has been studied and details of their redox properties are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water-soluble copper(II) complex [Cu(H2R)(HL)]center dot H2O (1) was prepared by reaction of copper(II) nitrate hydrate with (E)-2-(((1-hydroxynaphthalen-2-yl)methylene)amino) benzenesulfonic acid (H2L) and diethanolamine (H3R). It was characterized by IR and ESI-MS spectroscopies, elemental and X-ray crystal structural analyses. 1 shows a high catalytic activity for the solvent-free microwave (MW) assisted oxidation of 1-phenylethanol with tert-butylhydroperoxide, leading, in the presence of TEMPO, to yields up to 85% (TON = 850) in a remarkably short reaction time (15 min, with the corresponding TOE value of 3.40 x 10(3) h(-1)) under low power (25W) MW irradiation. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new tetranuclear complexes [Cu-4(mu-O)(L-1)-Cl-4] and [Cu-4(mu(4)-O)(L-2)(2)Cl-4] (2), where H2L1 is a macrocyclic ligand resulting from [2+2] condensation of 2,6-diformy1-4-methylphanol (DFF) and 1,3-bis(aminopropy1)tetramethyldisiloxane, and HL2 is a 1:2 condensation product: of DFF with trimethylsilyl p-aminobenzoate, have been prepared. The structures of the products were established by Xray diffraction. The complexes have been characterised by FTIR, UV/Vis spectroscopy, ES1 mass-spectrometry and magnetic susceptibility measurements. The latter revealed that the letrftriuclear complexes can be descr bed as two ferromagnetically coupled dinuclear units, in which the two copper(II) ions interact antiferromacinetically. The ccimpi.iunds act as homogeneous catalyst precursors for a number of single-pot reactions, including (I) hydrocarbaxylation, with CO, H2O and K2S2O8, of a variety of linear and cyclic (n = 5-8) alkanes into the corresponding Cn+1 carboxylic acids, (ii) peroxidative oxidation of cyclohexane, and (iii) solvent-free microwave-assisted oxidation of 1-phenyletha.nol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work concerns recent advances (since 2005) in the oxidative functionalization of alkanes, alkenes and ketones, under mild conditions, catalyzed by homoscorpionate tris(pyrazol-1-yl)methane metal complexes. The main types of such homogeneous or supported catalysts are classified, and the critical analysis of the most efficient catalytic systems in the different reactions is presented. These reactions include the mild oxidation of alkanes (typically cyclohexane as a model substrate) with hydrogen peroxide (into alkyl hydroperoxides, alcohols, and ketones), the hydrocarboxylation of gaseous alkanes (with carbon monoxide and potassium peroxodisulfate) into the corresponding Cn+1 carboxylic acids, as well as the epoxidation of alkenes and the Baeyer-Villiger oxidation of linear and cyclic ketones with hydrogen peroxide into the corresponding esters and lactones. Effects of various reaction parameters are highlighted and the preferable requirements for a prospective homogeneous or supported C-scorpionate-M-based catalyst in oxidative transformations of those substrates are identified. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhenium (I, III-V or VII) complexes bearing N-donor or oxo-ligands catalyse the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g. 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone and 3,3-dimethyl-2-butanone) into the corresponding lactones or esters, in the presence of aqueous H2O2 (30%). The effects of various reaction parameters are studied allowing to achieve yields up to 54%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desilication and a combination of alkaline followed by acid treatment were applied to MCM-22 zeolite using two different base concentrations. The samples were characterised by powder X-ray diffraction, Al-27 and Si-29 MAS-NMR spectroscopy, SEM, TEM and low temperature N-2 adsorption. The acidity of the samples was study through pyridine adsorption followed by FTIR spectroscopy and by the analyses of the hydroxyl region. The catalytic behaviour, anticipated by the effect of post-synthesis treatments on the acidity and space available inside the two internal pore systems was evaluated by using the model reaction of m-xylene transformation. The generation of mesoporosity was achieved upon alkaline treatment with 0.05 M NaOH solution and practically no additional gain was obtained when the more concentrate solution, 0.1 M, was used. Instead, Al extraction takes place along with Si, as shown by Si-29 and Al-27 MAS-NMR data, followed by Al deposition as extraframework species. Samples submitted to alkaline plus acid treatments present distinct behaviour. When the lowest NaOH solution was used no relevant effect was observed on the textural characteristics. Additionally, when the acid treatment was performed on an already fragilized MCM-22 structure, due to previous desilication with 0.1 M NaOH solution, the extraction of Al from both internal pore systems promotes their interconnection, evolving from a 2-D to a 3-D porous structure. This transformation has a marked effect in the catalytic behaviour, allowing an increase of m-xylene conversion as a consequence of an easier and faster molecular traffic in the 3-D structure. On the other hand, the continuous deposition of extraframework Al species inside the pores leads to a shape selective effect that privileges the formation of the more valuable isomer p-xylene.