34 resultados para Mixed-Integer Nonlinear Programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Controlo de Gestão e dos Negócios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new hexanuclear mixed-valence vanadium complex [V3O3(OEt)(ashz)(2)(mu-OEt)](2) (1) with an N,O-donor ligand is reported. It acts as a highly efficient catalyst toward alkane oxidations by aqueous H2O2. Remarkably, high turnover numbers up to 25000 with product yields of up to 27% (based on alkane) stand for one of the most active systems for such reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a 3D-2D image registration method that relates image features of 2D projection images to the transformation parameters of the 3D image by nonlinear regression. The method is compared with a conventional registration method based on iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was performed, and the alignment quality was measured by the mean target registration error (mTRE). The regression approach was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of International Conference - SPIE 7477, Image and Signal Processing for Remote Sensing XV - 28 September 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study some properties of the monotone solutions of the boundary value problem (p(u'))' - cu' + f(u) = 0, u(-infinity) = 0, u(+infinity) = 1, where f is a continuous function, positive in (0, 1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of (0, 1) or (0, +infinity) onto [0, +infinity). This problem arises when we look for travelling waves for the reaction diffusion equation partial derivative u/partial derivative t = partial derivative/partial derivative x [p(partial derivative u/partial derivative x)] + f(u) with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator p(nu)= nu/root 1-nu(2). The same ideas apply when P is given by the one- dimensional p- Laplacian P(v) = |v|(p-2)v. In this case, an advection term is also considered. We show that, as for the classical Fisher- Kolmogorov- Petrovski- Piskounov equations, there is an interval of admissible speeds c and we give characterisations of the critical speed c. We also present some examples of exact solutions. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the thermodynamics and percolation regimes of model binary mixtures of patchy colloidal particles. The particles of each species have three sites of two types, one of which promotes bonding of particles of the same species while the other promotes bonding of different species. We find up to four percolated structures at low temperatures and densities: two gels where only one species percolates, a mixed gel where particles of both species percolate but neither species percolates separately, and a bicontinuous gel where particles of both species percolate separately forming two interconnected networks. The competition between the entropy and the energy of bonding drives the stability of the different percolating structures. Appropriate mixtures exhibit one or more connectivity transitions between the mixed and bicontinuous gels, as the temperature and/or the composition changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stochastic programming approach is proposed in this paper for the development of offering strategies for a wind power producer. The optimization model is characterized by making the analysis of several scenarios and treating simultaneously two kinds of uncertainty: wind power and electricity market prices. The approach developed allows evaluating alternative production and offers strategies to submit to the electricity market with the ultimate goal of maximizing profits. An innovative comparative study is provided, where the imbalances are treated differently. Also, an application to two new realistic case studies is presented. Finally, conclusions are duly drawn.