22 resultados para Beneficial
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar
Resumo:
Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SIX mixes were produced; 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% f(ad), respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Gestão Estratégica das Relações Públicas.
Resumo:
Abstract Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SCC mixes were produced: 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% fad, respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. © 2015 Elsevier Ltd. All rights reserved.
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
The basic objective of this work is to evaluate the durability of self-compacting concrete (SCC) produced in binary and ternary mixes using fly ash (FA) and limestone filler (LF) as partial replacement of cement. The main characteristics that set SCC apart from conventional concrete (fundamentally its fresh state behaviour) essentially depend on the greater or lesser content of various constituents, namely: greater mortar volume (more ultrafine material in the form of cement and mineral additions); proper control of the maximum size of the coarse aggregate; use of admixtures such as superplasticizers. Significant amounts of mineral additions are thus incorporated to partially replace cement, in order to improve the workability of the concrete. These mineral additions necessarily affect the concrete’s microstructure and its durability. Therefore, notwithstanding the many well-documented and acknowledged advantages of SCC, a better understanding its behaviour is still required, in particular when its composition includes significant amounts of mineral additions. An ambitious working plan was devised: first, the SCC’s microstructure was studied and characterized and afterwards the main transport and degradation mechanisms of the SCC produced were studied and characterized by means of SEM image analysis, chloride migration, electrical resistivity, and carbonation tests. It was then possible to draw conclusions about the SCC’s durability. The properties studied are strongly affected by the type and content of the additions. Also, the use of ternary mixes proved to be extremely favourable, confirming the expected beneficial effect of the synergy between LF and FA. © 2015 RILEM.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Didáticas Integradas em Língua Portuguesa, Matemática, Ciências Naturais e Sociais