179 resultados para supervised apprenticeship


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumo I - A frequência do Estágio do Ensino Especializado proporcionou uma oportunidade de observar o ensino de piano numa das escolas mais importantes do ensino da música em Portugal, acompanhando alunos do Curso Básico e do Curso Secundário, que frequentaram a Escola de Música do Conservatório Nacional no regime integrado. O processo de observação de aulas que decorreu deste estágio possibilitou-nos assistir às aulas de piano de uma professora experiente, permitindo a observação de metodologias consolidadas e assistir de perto à forma como estas são postas em prática. Por outro lado, através da leccionação de aulas observadas, foi dada a oportunidade de testar e reflectir sobre o próprio desempenho docente, procurando estratégias e ferramentas pedagógicas que possam vir a acrescentar qualidade à prática pedagógica. O ensino especializado da música em Portugal tem experimentado mudanças importantes, o que leva a que haja uma adaptação das escolas às mudanças, continuando a leccionar um ensino de qualidade, que se quer cada vez mais eficaz, inovador, e com professores cada vez melhor fundamentados e preparados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado Em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In machine learning and pattern recognition tasks, the use of feature discretization techniques may have several advantages. The discretized features may hold enough information for the learning task at hand, while ignoring minor fluctuations that are irrelevant or harmful for that task. The discretized features have more compact representations that may yield both better accuracy and lower training time, as compared to the use of the original features. However, in many cases, mainly with medium and high-dimensional data, the large number of features usually implies that there is some redundancy among them. Thus, we may further apply feature selection (FS) techniques on the discrete data, keeping the most relevant features, while discarding the irrelevant and redundant ones. In this paper, we propose relevance and redundancy criteria for supervised feature selection techniques on discrete data. These criteria are applied to the bin-class histograms of the discrete features. The experimental results, on public benchmark data, show that the proposed criteria can achieve better accuracy than widely used relevance and redundancy criteria, such as mutual information and the Fisher ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a new toolbox for hyperspectral imagery, developed under the MATLAB environment. This toolbox provides easy access to different supervised and unsupervised classification methods. This new application is also versatile and fully dynamic since the user can embody their own methods, that can be reused and shared. This toolbox, while extends the potentiality of MATLAB environment, it also provides a user-friendly platform to assess the results of different methodologies. In this paper it is also presented, under the new application, a study of several different supervised and unsupervised classification methods on real hyperspectral data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.