379 resultados para threshold voltage model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Fin field effect transistors (FinFETS) are silicon-on-insulator (SOI) transistors with three-dimensional structures. As a result of some fabrication-process limitations (as nonideal anisotropic overetch) some FinFETs have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections, as expected. This geometric alteration results in some device issues, like carrier profile, threshold voltage, and corner effects. This work analyzes these consequences based on three-dimensional numeric simulation of several dual-gate and triple-gate FinFETs. The simulation results show that the threshold voltage depends on the sidewall inclination angle and that this dependence varies according to the body doping level. The corner effects also depend on the inclination angle and doping level. (C) 2008 The Electrochemical Society.
Resumo:
This letter presents the properties of nMOS junctionless nanowire transistors (JNTs) under cryogenic operation. Experimental results of drain current, subthreshold slope, maximum transconductance at low electric field, and threshold voltage, as well as its variation with temperature, are presented. Unlike in classical devices, the drain current of JNTs decreases when temperature is lowered, although the maximum transconductance increases when the temperature is lowered down to 125 K. An analytical model for the threshold voltage is proposed to explain the influence of nanowire width and doping concentration on its variation with temperature. It is shown that the wider the nanowire or the lower the doping concentration, the higher the threshold voltage variation with temperature.
Resumo:
The multiple-gate field-effect transistor (MuGFET) is a device with a gate folded on different sides of the channel region. They are one of the most promising technological solutions to create high-performance ultra-scaled SOI CMOS. In this work, the behavior of the threshold voltage in double-gate, triple-gate and quadruple-gate SOI transistors with different channel doping concentrations is studied through three-dimensional numerical simulation. The results indicated that for double-gate transistors, one or two threshold voltages can be observed, depending on the channel doping concentration. However, in triple-gate and quadruple-gate it is possible to observe up to four threshold voltages due to the corner effect and the different doping concentration between the top and bottom of the Fin. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na(+) channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na(+) imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na(+) clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na(+) gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K(+) currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a `dual` firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).
Resumo:
This paper presents the results of the in-depth study of the Barkhausen effect signal properties for the plastically deformed Fe-2%Si samples. The investigated samples have been deformed by cold rolling up to plastic strain epsilon(p) = 8%. The first approach consisted of time-domain-resolved pulse and frequency analysis of the Barkhausen noise signals whereas the complementary study consisted of the time-resolved pulse count analysis as well as a total pulse count. The latter included determination of time distribution of pulses for different threshold voltage levels as well as the total pulse count as a function of both the amplitude and the duration time of the pulses. The obtained results suggest that the observed increase in the Barkhausen noise signal intensity as a function of deformation level is mainly due to the increase in the number of bigger pulses.
Resumo:
The trapezium is often a better approximation for the FinFET cross-section shape, rather than the design-intended rectangle. The frequent width variations along the vertical direction, caused by the etching process that is used for fin definition, may imply in inclined sidewalls and the inclination angles can vary in a significant range. These geometric variations may cause some important changes in the device electrical characteristics. This work analyzes the influence of the FinFET sidewall inclination angle on some relevant parameters for analog design, such as threshold voltage, output conductance, transconductance, intrinsic voltage gain (A V), gate capacitance and unit-gain frequency, through 3D numeric simulation. The intrinsic gain is affected by alterations in transconductance and output conductance. The results show that both parameters depend on the shape, but in different ways. Transconductance depends mainly on the sidewall inclination angle and the fixed average fin width, whereas the output conductance depends mainly on the average fin width and is weakly dependent on the sidewall inclination angle. The simulation results also show that higher voltage gains are obtained for smaller average fin widths with inclination angles that correspond to inverted trapeziums, i.e. for shapes where the channel width is larger at the top than at the transistor base because of the higher attained transconductance. When the channel top is thinner than the base, the transconductance degradation affects the intrinsic voltage gain. The total gate capacitances also present behavior dependent on the sidewall angle, with higher values for inverted trapezium shapes and, as a consequence, lower unit-gain frequencies.
Resumo:
FinFETs are recognized as promising candidates for the CMOS nanometer era. In this paper the most recent results for cryogenic operation of FinFETs will be demonstrated with special emphasis on analog applications. Threshold voltage, subthreshold slope and carrier mobility will be studied. Also some important figures of merit for analog circuit operation as for readout electronics, such as transconductance, output conductance and intrinsic voltage gain will be covered. It is demonstrated that the threshold voltage of undoped narrow FinFETs is less temperature-dependent than for a planar single-gate device with similar doping concentration. The temperature reduction improves the transconductance over drain current ratio in any operational region. On the other hand, the output conductance is degraded when the temperature is reduced. The combination of these effects shows that the intrinsic gain of a L = 90 nm FinFET is degraded by 2 dB when the temperature reduces from 300 K to 100 K. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The temperature influence on the gate-induced floating body effect (GIFBE) in fully depleted (FD) silicon-on-insulator (SOI) nMOSFETs is investigated, based on experimental results and two-dimensional numerical simulations. The GIFBE behavior will be evaluated taking into account the impact of carrier recombination and of the effective electric field mobility degradation on the second peak in the transconductance (gm). This floating body effect is also analyzed as a function of temperature. It is shown that the variation of the studied parameters with temperature results in a ""C"" shape of the threshold voltage corresponding with the second peak in the gm curve. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the critical behavior of a stochastic lattice model describing a predator-prey system. By means of Monte Carlo procedure we simulate the model defined on a regular square lattice and determine the threshold of species coexistence, that is, the critical phase boundaries related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. A finite size scaling analysis is employed to determine the order parameter, order parameter fluctuations, correlation length and the critical exponents. Our numerical results for the critical exponents agree with those of the directed percolation universality class. We also check the validity of the hyperscaling relation and present the data collapse curves.
Resumo:
Background Data: Photodynamic therapy (PDT) involves the photoinduction of cytotoxicity using a photosensitizer agent, a light source of the proper wavelength, and the presence of molecular oxygen. A model for tissue response to PDT based on the photodynamic threshold dose (Dth) has been widely used. In this model cells exposed to doses below Dth survive while at doses above the Dth necrosis takes place. Objective: This study evaluated the light Dth values by using two different methods of determination. One model concerns the depth of necrosis and the other the width of superficial necrosis. Materials and Methods: Using normal rat liver we investigated the depth and width of necrosis induced by PDT when a laser with a gaussian intensity profile is used. Different light doses, photosensitizers (Photogem, Photofrin, Photosan, Foscan, Photodithazine, and Radachlorin), and concentrations were employed. Each experiment was performed on five animals and the average and standard deviations were calculated. Results: A simple depth and width of necrosis model analysis allows us to determine the threshold dose by measuring both depth and surface data. Comparison shows that both measurements provide the same value within the degree of experimental error. Conclusion: This work demonstrates that by knowing the extent of the superficial necrotic area of a target tissue irradiated by a gaussian light beam, it is possible to estimate the threshold dose. This technique may find application where the determination of Dth must be done without cutting the tissue.
Resumo:
Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-modified landscapes is the total amount of remnant native vegetation. In a seminal study Andren proposed the existence of a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions - that patch-area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa, ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches within a single framework, providing a powerful tool for analysing the potential effectiveness of management interventions.
Resumo:
We propose a model for D(+)->pi(+)pi(-)pi(+) decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f(0)(600)/sigma and f(0)(980). The weak decay amplitude for D(+)-> R pi(+), where R is a resonance that subsequently decays into pi(+)pi(-), is constructed in a factorization approach. In the S wave, we implement the strong decay R ->pi(+)pi(-) by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m(pi pi)(2) from threshold to about 3 GeV(2). In order to reproduce the experimental Dalitz plot for D(+)->pi(+)pi(-)pi(+), we include contributions beyond the S wave. For the P wave, dominated by the rho(770)(0), we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f(2)(1270) and rho(1450)(0). The major achievement is a good reproduction of the experimental m(pi pi)(2) distribution, and of the partial as well as the total D(+)->pi(+)pi(-)pi(+) branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D ->sigma transition form factor at q(2)=m pi(2).
Resumo:
We report on some unusual behavior of the measured current-voltage characteristics (CVC) in artificially prepared two-dimensional unshunted array of overdamped Nb-AlO(x)-Nb Josephson junctions. The obtained nonlinear CVC are found to exhibit a pronounced (and practically temperature independent) crossover at some current I(cr) = (1/2 beta(C)-1)I(C) from a resistance R dominated state with V(R)=R root I(2)-I(C)(2) below I(cr) to a capacitance C dominated state with V(C) = root(h) over bar /4eC root I-I(C) above I(cr). The origin of the observed behavior is discussed within a single-plaquette approximation assuming the conventional resistively shunted junction model with a finite capacitance and the Ambegaokar-Baratoff relation for the critical current of the single junction. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3407566]
Resumo:
This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage. (C) 2010 Elsevier B.V. All rights reserved.