CRITICAL BEHAVIOR AND THRESHOLD OF COEXISTENCE OF A PREDATOR-PREY STOCHASTIC MODEL IN A 2D LATTICE


Autoria(s): ARGOLO, C.; OTAVIANO, H.; GLERIA, Iram; ARASHIRO, Everaldo; Tome, Tania
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We investigate the critical behavior of a stochastic lattice model describing a predator-prey system. By means of Monte Carlo procedure we simulate the model defined on a regular square lattice and determine the threshold of species coexistence, that is, the critical phase boundaries related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. A finite size scaling analysis is employed to determine the order parameter, order parameter fluctuations, correlation length and the critical exponents. Our numerical results for the critical exponents agree with those of the directed percolation universality class. We also check the validity of the hyperscaling relation and present the data collapse curves.

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CAPES

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Fundação de Amparo a Pesquisa do Estado de Alagoas (FAPEAL)

FAPEAL

Identificador

INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, v.20, n.2, p.309-314, 2010

0218-1274

http://producao.usp.br/handle/BDPI/29204

10.1142/S0218127410025752

http://dx.doi.org/10.1142/S0218127410025752

Idioma(s)

eng

Publicador

WORLD SCIENTIFIC PUBL CO PTE LTD

Relação

International Journal of Bifurcation and Chaos

Direitos

restrictedAccess

Copyright WORLD SCIENTIFIC PUBL CO PTE LTD

Palavras-Chave #Criticality #directed percolation #Monte Carlo #LOTKA-VOLTERRA MODEL #PHASE-TRANSITIONS #ABSORBING STATES #SYSTEMS #Mathematics, Interdisciplinary Applications #Multidisciplinary Sciences
Tipo

article

original article

publishedVersion