CRITICAL BEHAVIOR AND THRESHOLD OF COEXISTENCE OF A PREDATOR-PREY STOCHASTIC MODEL IN A 2D LATTICE
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We investigate the critical behavior of a stochastic lattice model describing a predator-prey system. By means of Monte Carlo procedure we simulate the model defined on a regular square lattice and determine the threshold of species coexistence, that is, the critical phase boundaries related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. A finite size scaling analysis is employed to determine the order parameter, order parameter fluctuations, correlation length and the critical exponents. Our numerical results for the critical exponents agree with those of the directed percolation universality class. We also check the validity of the hyperscaling relation and present the data collapse curves. CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo a Pesquisa do Estado de Alagoas (FAPEAL) FAPEAL |
Identificador |
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, v.20, n.2, p.309-314, 2010 0218-1274 http://producao.usp.br/handle/BDPI/29204 10.1142/S0218127410025752 |
Idioma(s) |
eng |
Publicador |
WORLD SCIENTIFIC PUBL CO PTE LTD |
Relação |
International Journal of Bifurcation and Chaos |
Direitos |
restrictedAccess Copyright WORLD SCIENTIFIC PUBL CO PTE LTD |
Palavras-Chave | #Criticality #directed percolation #Monte Carlo #LOTKA-VOLTERRA MODEL #PHASE-TRANSITIONS #ABSORBING STATES #SYSTEMS #Mathematics, Interdisciplinary Applications #Multidisciplinary Sciences |
Tipo |
article original article publishedVersion |