245 resultados para state estimation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the innovation approach is used to estimate the measurement total error associated with power system state estimation. This is required because the power system equations are very much correlated with each other and as a consequence part of the measurements errors is masked. For that purpose an index, innovation index (II), which provides the quantity of new information a measurement contains is proposed. A critical measurement is the limit case of a measurement with low II, it has a zero II index and its error is totally masked. In other words, that measurement does not bring any innovation for the gross error test. Using the II of a measurement, the masked gross error by the state estimation is recovered; then the total gross error of that measurement is composed. Instead of the classical normalised measurement residual amplitude, the corresponding normalised composed measurement residual amplitude is used in the gross error detection and identification test, but with m degrees of freedom. The gross error processing turns out to be very simple to implement, requiring only few adaptations to the existing state estimation software. The IEEE-14 bus system is used to validate the proposed gross error detection and identification test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology to estimate unbalanced harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The problem solving algorithm herein proposed makes use of data from various power quality meters, which can either be synchronized by high technology GPS devices or by using information from a fundamental frequency load flow, what makes the overall power quality monitoring system much less costly. The ES based harmonic estimation model is applied to a 14 bus network to compare its performance to a conventional Monte Carlo approach. It is also applied to a 50 bus subtransmission network in order to compare the three-phase and single-phase approaches as well as the robustness of the proposed method. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology to estimate harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The main advantage in using such a technique relies upon its modeling facilities as well as its potential to solve fairly complex problems. The problem-solving algorithm herein proposed makes use of data from various power-quality (PQ) meters, which can either be synchronized by high technology global positioning system devices or by using information from a fundamental frequency load flow. This second approach makes the overall PQ monitoring system much less costly. The algorithm is applied to an IEEE test network, for which sensitivity analysis is performed to determine how the parameters of the ES can be selected so that the algorithm performs in an effective way. Case studies show fairly promising results and the robustness of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper considers the optimal linear estimates recursion problem for discrete-time linear systems in its more general formulation. The system is allowed to be in descriptor form, rectangular, time-variant, and with the dynamical and measurement noises correlated. We propose a new expression for the filter recursive equations which presents an interesting simple and symmetric structure. Convergence of the associated Riccati recursion and stability properties of the steady-state filter are provided. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This letter shows that the matrix can be used for redundancy and observability analysis of metering systems composed of PMU measurements and conventional measurements (power and voltage magnitude measurements). The matrix is obtained via triangular factorization of the Jacobian matrix. Observability analysis and restoration is carried out during the triangular factorization of the Jacobian matrix, and the redundancy analysis is made exploring the matrix structure. As a consequence, the matrix can be used for metering system planning considering conventional and PMU measurements. These features of the matrix will be outlined and illustrated by numerical examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This letter presents some notes on the use of the Gram matrix in observability analysis. This matrix is constructed considering the rows of the measurement Jacobian matrix as vectors, and it can be employed in observability analysis and restoration methods. The determination of nonredundant pseudo-measurements (normally injections pseudo-measurements) for merging observable islands into an observable (single) system is carried out analyzing the pivots of the Gram matrix. The Gram matrix can also be used to verify local redundancy, which is important in measurement system planning. Some numerical examples` are used to illustrate these features. Others features of the Gram matrix are under study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examination of the mechanisms involved in the construction of present-day vegetative deposits along coastal waterways has made it possible to establish depositional patterns that can be compared with those found in similar environments in geologic time. These patterns include not only the composition and transport of the debris but also an estimation of the time involved in its deposition. Six sites with active deposits of plant macrodebris in the coastal basin of the Itanhaem River, Sao Paulo State, Brazil, were used in the study. In the central portion of the basin, the interior coastal plain is covered with restinga forest (dense, wet tropical forest of low altitudes), while the lower portion consists of mangrove swamps. The coast reflects anthropogenic intervention, and only a few scattered remnants of precolonization dune vegetation remain. The results after three years of study suggest that the accumulation of plant macrodebris in the middle and lower portions of the basin is parautochthonous, since only the leaves of genera typical of the restinga forest and mangrove swamp, respectively, were found. Along the coast the accumulations involved a mixture of parautochthonous and allochthonous elements. On the levee of the Branco River and within the mangrove swamp, deposition was slow, and many of the elements decayed quickly; such accumulations show little potential for preservation and eventual fossilization. A different site, however, reveals the rapid deposition of thick layers of plant debris, presumably associated with storms, and these accumulations are preserved for long periods, constituting good candidates for possible fossilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the problem of state prediction for descriptor systems subject to bounded uncertainties. The problem is stated in terms of the optimization of an appropriate quadratic functional. This functional is well suited to derive not only the robust predictor for descriptor systems but also that for usual state-space systems. Numerical examples are included in order to demonstrate the performance of this new filter. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.