44 resultados para prediction problems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Several real problems involve the classification of data into categories or classes. Given a data set containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary classification problems. However, many problems require the discrimination of examples into more than two categories or classes. This paper presents a survey on the main strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass classification problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final prediction.
Resumo:
A series of nine new [3-(disubstituted-phosphate)-4,4,4-trifluoro-butyl]-carbamic acid ethyl esters (phosphate-carbamate compounds) was obtained through the reaction of (4,4,4-trifluoro-3-hydroxybut-1-yl)-carbamic acid ethyl esters with phosphorus oxychloride followed by the addition of alcohols. The products were characterized by ¹H, 13C, 31P, and 19F NMR spectroscopy, GC-MS, and elemental analysis. All the synthesized compounds were screened for acetylcholinesterase (AChE) inhibitory activity using the Ellman method. All compounds containing phosphate and carbamate pharmacophores in their structures showed enzyme inhibition, being the compound bearing the diethoxy phosphate group (2b) the most active compound. Molecular modeling studies were performed to investigate the detailed interactions between AChE active site and small-molecule inhibitor candidates, providing valuable structural insights into AChE inhibition.
Resumo:
PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.
Resumo:
PURPOSE: Compare parents' reports of youth problems (PRYP) with adolescent problems self-reports (APSR) pre/post behavioral treatment of nocturnal enuresis (NE) based on the use of a urine alarm. MATERIALS AND METHODS: Adolescents (N = 19) with mono-symptomatic (primary or secondary) nocturnal enuresis group treatment for 40 weeks. Discharge criterion was established as 8 weeks with consecutive dry nights. PRYP and APSR were scored by the Child Behavior Checklist (CBCL) and Youth Self-Report (YSR). RESULTS: Pre-treatment data: 1) Higher number of clinical cases based on parent report than on self-report for Internalizing Problems (IP) (13/19 vs. 4/19), Externalizing Problems (EP) (7/19 vs. 5/19) and Total Problem (TP) (11/19 vs. 5/19); 2) Mean PRYP scores for IP (60.8) and TP (61) were within the deviant range (T score ≥ 60); while mean PRYP scores for EP (57.4) and mean APSR scores (IP = 52.4, EP = 49.5, TP = 52.4) were within the normal range. Difference between PRYP' and APSR' scores was significant. Post treatment data: 1) Discharge for majority of the participants (16/19); 2) Reduction in the number of clinical cases on parental evaluation: 9/19 adolescents remained within clinical range for IP, 2/19 for EP, and 7/19 for TP. 3) All post-treatment mean scores were within the normal range; the difference between pre and post evaluation scores was significant for PRYP. CONCLUSIONS: The behavioral treatment based on the use of urine alarm is effective for adolescents with mono-symptomatic (primary and secondary) nocturnal enuresis. The study favors the hypothesis that enuresis is a cause, not a consequence, of other behavioral problems.
Resumo:
A new criterion has been recently proposed combining the topological instability (lambda criterion) and the average electronegativity difference (Delta e) among the elements of an alloy to predict and select new glass-forming compositions. In the present work, this criterion (lambda.Delta e) is applied to the Al-Ni-La and Al-Ni-Gd ternary systems and its predictability is validated using literature data for both systems and additionally, using own experimental data for the Al-La-Ni system. The compositions with a high lambda.Delta e value found in each ternary system exhibit a very good correlation with the glass-forming ability of different alloys as indicated by their supercooled liquid regions (Delta T(x)) and their critical casting thicknesses. In the case of the Al-La-Ni system, the alloy with the largest lambda.Delta e value, La(56)Al(26.5)Ni(17.5), exhibits the highest glass-forming ability verified for this system. Therefore, the combined lambda.Delta e criterion is a simple and efficient tool to select new glass-forming compositions in Al-Ni-RE systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563099]
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
The aim of this study was to compare REML/BLUP and Least Square procedures in the prediction and estimation of genetic parameters and breeding values in soybean progenies. F(2:3) and F(4:5) progenies were evaluated in the 2005/06 growing season and the F(2:4) and F(4:6) generations derived thereof were evaluated in 2006/07. These progenies were originated from two semi-early, experimental lines that differ in grain yield. The experiments were conducted in a lattice design and plots consisted of a 2 m row, spaced 0.5 m apart. The trait grain yield per plot was evaluated. It was observed that early selection is more efficient for the discrimination of the best lines from the F(4) generation onwards. No practical differences were observed between the least square and REML/BLUP procedures in the case of the models and simplifications for REML/BLUP used here.
Resumo:
Various methods are currently used in order to predict shallow landslides within the catchment scale. Among them, physically based models present advantages associated with the physical description of processes by means of mathematical equations. The main objective of this research is the prediction of shallow landslides using TRIGRS model, in a pilot catchment located at Serra do Mar mountain range, Sao Paulo State, southeastern Brazil. Susceptibility scenarios have been simulated taking into account different mechanical and hydrological values. These scenarios were analysed based on a landslide scars map from the January 1985 event, upon which two indexes were applied: Scars Concentration (SC - ratio between the number of cells with scars, in each class, and the total number of cells with scars within the catchment) and Landslide Potential (LP - ratio between the number of cells with scars, in each class, and the total number of cells in that same class). The results showed a significant agreement between the simulated scenarios and the scar's map. In unstable areas (SF <= 1), the SC values exceeded 50% in all scenarios. Based on the results, the use of this model should be considered an important tool for shallow landslide prediction, especially in areas where mechanical and hydrological properties of the materials are not well known.
Resumo:
In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.
Resumo:
We use the density functional theory/local-density approximation (DFT/LDA)-1/2 method [L. G. Ferreira , Phys. Rev. B 78, 125116 (2008)], which attempts to fix the electron self-energy deficiency of DFT/LDA by half-ionizing the whole Bloch band of the crystal, to calculate the band offsets of two Si/SiO(2) interface models. Our results are similar to those obtained with a ""state-of-the-art"" GW approach [R. Shaltaf , Phys. Rev. Lett. 100, 186401 (2008)], with the advantage of being as computationally inexpensive as the usual DFT/LDA. Our band gap and band offset predictions are in excellent agreement with experiments.
Resumo:
We investigate the performance of a variant of Axelrod's model for dissemination of culture-the Adaptive Culture Heuristic (ACH)-on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents' strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N(1/4) so that the number of agents must increase with the fourth power of the problem size, N proportional to F(4), to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F(6) which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.
Resumo:
Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.
Resumo:
Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q)
Resumo:
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction between neighbors, and its consequences are discussed. The appearance of extremists is naturally observed and it seems to be a characteristic of this model.