121 resultados para oxidative processes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper presents the study of photochemical behavior of polycyclic aromatic hydrocarbons (PAHs), potential pollutants in secondary reactions in aerosols, through Raman spectroscopy compared with its electrochemical behavior. The PAHs studied include pyrene, anthracene, phenanthrene and fluorene. These were adsorbed onto TiO2 and irradiated with ultraviolet light (254 nm). Their electrochemical oxidation was studied by in situ Surface-enhanced Raman Scattering (SERS) and led to the formation of carbonyl-containing products. Oxidized intermediates bearing the C=O group were also formed during photodegradation. The joint analysis of the photodegradation data with those produced by electrochemical means - using spectroscopic techniques for the identification and characterization of the products - revealed the formation of identical products for anthracene, but not for pyrene. A reasonable explanation for this difference in results is that photochemical and electrochemical oxidation reactions proceed via different mechanisms. While photocatalytic degradation over TiO2 is initiated by hydroxyl radicals, electrochemical oxidation is initiated by the direct electron transfer from adsorbed PAH to the electrode, generating PAH cation radicals that undergo subsequent reactions.
Resumo:
The survey is aimed at critically reviewing information on the UVA-mediated oxidative reactions to cellular components with emphasis on DNA as the result of mostly photosensitized pathways. It appears clearly that UVA radiation is relatively much more efficient than UVB photons in inducing oxidative processes. The main UVA-induced oxidative degradation pathways of DNA are reported and discussed mechanistically. They are mostly rationalized in terms of a major contribution of singlet molecular oxygen ((1)O(2)) and to a lesser extent of hydroxyl radical ((center dot)OH), that in the latter case originates from Fenton-type reactions. This leads to the predominant formation of 8-oxo-7,8-dihydroguanine together with smaller amounts of oxidized pyrimidine bases and DNA strand breaks in UVA-irradiated cells.
Resumo:
Estrogens are a class of micro-pollutants found in water at low concentrations (in the ng L(-1) range), but often sufficient to exert estrogenic effects due to their high estrogenic potency. Disinfection of waters containing estrogens through oxidative processes has been shown to lead to the formation of disinfection byproducts, which may also be estrogenic. The present work investigates the formation of disinfection byproducts of 17 beta-estradiol (E2) and estrone (E1) in the treatment of water with ozone. Experiments have been carried out at two different concentrations of the estrogens in ground water (100 ng L(-1) and 100 mu g L(-1)) and at varying ozone dosages (0-30 mg L(-1)). Detection of the estrogens and their disinfection byproducts in the water samples has been performed by means of ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a triple quadrupole (QqQ) and a quadrupole-time of flight (QqTOF) instrument. Both E2 and El have been found to form two main byproducts, with molecular mass (MM) 288 and 278 in the case of E2, and 286 and 276 in the case of El, following presumably the same reaction pathways. The E2 byproduct with MM 288 has been identified as 10epsilon-17beta-dihydroxy-1,4-estradieno-3-one (DEO), in agreement with previously published results. The molecular structures and the formation pathways of the other three newly identified byproducts have been suggested. These byproducts have been found to be formed at both high and low concentrations of the estrogens and to be persistent even after application of high ozone dosages. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
In this work we report on a study of the morphological changes of LDL induced in vitro by metallic ions (Cu(2+) and Fe(3+)). These modifications were characterized by transmission electron microscopy, nuclear magnetic resonance and the Z-scan technique. The degree of oxidative modification of LDL was determined by the TBARS and lipid hydroperoxides assays. It is shown that distinct pathways for modifying lipoproteins lead to different morphological transformations of the particles characterized by changes in size and/or shape of the resulting particles, and by the tendency to induce aggregation of the particles. There were no evidence of melting of particles promoted by oxidative processes with Cu and Fe. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The photocatalytic degradation of Janus Green B azo dye over silver modified titanium dioxide films was investigated by surface-enhanced Raman spectroscopy (SERS). An optimized SERS-active substrate was employed to study the photodegradation reaction of Janus Green B. Considering that photocatalytic degradation processes of organic molecules adsorbed on TiO2 might involve either their oxidation or reduction reaction, the vibrational spectroelectrochemical study of the dye was also performed, in order to clarify the transformations involved in initial steps of its photochemical decomposition. In order to understand the changes in Raman spectra of Janus Green B after photodegradation and/or electrochemical processes, a vibrational assignment of the main Raman active modes of the dye was carried out, based on a detailed resonance Raman profile. Products formed by electrochemical and photochemical degradation processes were compared. The obtained results revealed that the first steps of the degradation process of Janus Green B involve a reductive mechanism. (C) 2007 Published by Elsevier B.V.
Resumo:
In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.
Resumo:
Sensory analysis is one of the most suitable processes for measuring oxidative damage and determining the shelf-life of nuts, but it is an expensive and time-consuming methodology. Thus, our objective was to correlate sensory data and chemical markers obtained during the accelerated oxidation of Brazil nuts and to determine the chemical parameters values associated with the sensory shelf-life of the nuts as established by the consumers. Brazil nuts were kept at 80 A degrees C for 21 days. At intervals of 2 days, the oxidized odor of the samples was analyzed by nine trained panelists using a discriminative scale, and the oil was extracted to quantify the chemical parameters. A high (r > 0.95) and significant correlation (p < 0.05) was observed between the sensory data and the hydroperoxide concentration (PV), para-anisidine value (pAV), hexanal content, and alpha- and gamma-tocopherol concentrations. When compared with fresh samples, sensory identification of oxidized odor occurred on the 4th day, noticeably earlier than changes in chemical markers (12th day). Consumers rejected the nuts after 12 days of storage, which corresponded to PV = 18.8 meq kg(-1) oil, pAV = 7.68, hexanal = 48.95 mu mol 100 g(-1) oil, alpha-tocopherol = 15.01 mg kg(-1) oil, and gamma + beta-tocopherol = 73.88 mg kg(-1) oil. Our study suggests that simple spectrometric methods, such as PV and pAV, can be used to estimate the oxidative shelf-life of nuts based on sensory analysis.
Resumo:
Air pollution is associated with morbidity and mortality induced by respiratory diseases. However, the mechanisms therein involved are not yet fully clarified. Thus, we tested the hypothesis that a single acute exposure to low doses of fine particulate matter (PM2.5) may induce functional and histological lung changes and unchain inflammatory and oxidative stress processes. PM2.5 was collected from the urban area of Sao Paulo city during 24 h and underwent analysis for elements and polycyclic aromatic hydrocarbon contents. Forty-six male BALB/c mice received intranasal instillation of 30 mu L of saline (CTRL) or PM2.5 at 5 or 15 mu g in 30 mu L of saline (P5 and P15, respectively). Twenty-four hours later, lung mechanics were determined. Lungs were then prepared for histological and biochemical analysis. P15 group showed significantly increased lung impedance and alveolar collapse, as well as lung tissue inflammation, oxidative stress and damage. P5 presented values between CTRL and P15: higher mechanical impedance and inflammation than CTRL, but lower inflammation and oxidative stress than P15. In conclusion, acute exposure to low doses of fine PM induced lung inflammation, oxidative stress and worsened lung impedance and histology in a dose-dependent pattern in mice.
Resumo:
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.
Resumo:
Components of the DNA mismatch repair (MMR) pathway are major players in processes known to generate genetic diversity, such as mutagenesis and DNA recombination. Trypanosoma cruzi, the protozoan parasite that causes Chagas disease has a highly heterogeneous population, composed of a pool of strains with distinct characteristics. Studies with a number of molecular markers identified up to six groups in the T. cruzi population, which showed distinct levels of genetic variability. To investigate the molecular basis for such differences, we analyzed the T. cruzi MSH2 gene, which encodes a key component of MMR, and showed the existence of distinct isoforms of this protein. Here we compared cell survival rates after exposure to genotoxic agents and levels of oxidative stress-induced DNA in different parasite strains. Analyses of msh2 mutants in both T. cruzi and T. brucei were also used to investigate the role of Tcmsh2 in the response to various DNA damaging agents. The results suggest that the distinct MSH2 isoforms have differences in their activity. More importantly, they also indicate that, in addition to its role in MMR, TcMSH2 acts in the parasite response to oxidative stress through a novel mitochondrial function that may be conserved in T. brucei. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an automatic device for in situ and continuous monitoring of the ageing process occurring in natural and synthetic resins widely used in art and in the conservation and restoration of cultural artefacts. The results of tests carried out under accelerated ageing conditions are also presented. This easy-to-assemble palm-top device, essentially consists of oscillators based on quartz crystal resonators coated with films of the organic materials whose response to environmental stress is to be addressed. The device contains a microcontroller which selects at pre-defined time intervals the oscillators and records and stores their oscillation frequency. The ageing of the coatings, caused by the environmental stress and resulting in a shift in the oscillation frequency of the modified crystals, can be straightforwardly monitored in this way. The kinetics of this process reflects the level of risk damage associated with a specific microenvironment. In this case, natural and artificial resins, broadly employed in art and restoration of artistic and archaeological artefacts (dammar and Paraloid B72), were applied onto the crystals. The environmental stress was represented by visible and UV radiation, since the chosen materials are known to be photochemically active, to different extents. In the case of dammar, the results obtained are consistent with previous data obtained using a bench-top equipment by impedance analysis through discrete measurements and confirm that the ageing of this material is reflected in the gravimetric response of the modified quartz crystals. As for Paraloid B72, the outcome of the assays indicates that the resin is resistant to visible light, but is very sensitive to UV irradiation. The use of a continuous monitoring system, apart from being obviously more practical, is essential to identify short-term (i.e. reversible) events, like water vapour adsorption/desorption processes, and to highlight ageing trends or sudden changes of such trends. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.
Resumo:
Ipomoea imperati (Vahl) Griseb., Convolvulaceae, is used in traditional medicine for the treatment of inflammation, swelling and wounds, as well as to treat pains and stomach problems. This work evaluates the anti-oxidative activity by ESR (Electron Spin Resonance spectroscopy) and the preventive and curative actions of I. imperati in gastric ulcer animal model. Ipomoea imperati (200 mg/kg, p.o.) prevented the formation of gastric lesions in 78% (p<0.05) when compared with the negative control tween 80. Lanzoprazole, prevented in 85% the gastric lesions formation induced by ethanol (p<0.05). Therefore, the oral administration of I. imperati one hour before the ulcerogenic agent prevented the ulcer formation, conserving the citoprotection characteristics of the gastric mucosa and assuring the integrity of gastric glands and gastric fossets. The healing activity of I. imperati (200 mg/kg, p.o.) evaluated in chronic ulcer experiments induced by the acetic acid, was 72% (p<0.05). The positive control, ranitidine, healed 78% of the gastric lesions (p<0.05). The histological analysis confirmed the recovery of the mucosal layer and the muscle mucosal layer harmed by the acetic acid. Experiments in vitro with DPPH (2.2-diphenyl-1-picrylhydrazyl) of anti-oxidative activity demonstrated that I. imperati presents an IC50 of 0.73±0.01 mg/mL.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.