10 resultados para open Hamiltonian systems

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semiclassical approximation for an evolving density operator, driven by a `closed` Hamiltonian operator and `open` Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra `open` term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further `small-chord` approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincare map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints on the divertor plate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we demonstrate that the inevitable action of the environment can be substantially weakened when considering appropriate nonstationary quantum systems. Beyond protecting quantum states against decoherence, an oscillating frequency can be engineered to make the system-reservoir coupling almost negligible. Differently from the program for engineering reservoir and similarly to the schemes for dynamical decoupling of open quantum systems, our technique does not require previous knowledge of the state to be protected. However, differently from the previously-reported schemes for dynamical decoupling, our technique does not rely on the availability of tailored external pulses acting faster than the shortest timescale accessible to the reservoir degree of freedom.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let (M, g) be a complete Riemannian manifold, Omega subset of Man open subset whose closure is homeomorphic to an annulus. We prove that if a,Omega is smooth and it satisfies a strong concavity assumption, then there are at least two distinct geodesics in starting orthogonally to one connected component of a,Omega and arriving orthogonally onto the other one. Using the results given in Giamb et al. (Adv Differ Equ 10:931-960, 2005), we then obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. Under a further symmetry assumption, the result is improved by showing the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinic orbits. In our proof we shall use recent deformation results proved in Giamb et al. (Nonlinear Anal Ser A: Theory Methods Appl 73:290-337, 2010).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study a symplectic chain with a non-local form of coupling by means of a standard map lattice where the interaction strength decreases with the lattice distance as a power-law, in Such a way that one can pass continuously from a local (nearest-neighbor) to a global (mean-field) type of coupling. We investigate the formation of map clusters, or spatially coherent structures generated by the system dynamics. Such clusters are found to be related to stickiness of chaotic phase-space trajectories near periodic island remnants, and also to the behavior of the diffusion coefficient. An approximate two-dimensional map is derived to explain some of the features of this connection. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic field line structure in a tokamak can be obtained by direct numerical integration of the field line equations. However, this is a lengthy procedure and the analysis of the solution may be very time-consuming. Otherwise we can use simple two-dimensional, area-preserving maps, obtained either by approximations of the magnetic field line equations, or from dynamical considerations. These maps can be quickly iterated, furnishing solutions that mirror the ones obtained from direct numerical integration, and which are useful when long-term studies of field line behavior are necessary (e.g. in diffusion calculations). In this work we focus on a set of simple tokamak maps for which these advantages are specially pronounced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley-Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambo et al. (2005) [8]) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948) [1]) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level. (C) 2010 Elsevier Ltd. All rights reserved.