6 resultados para losartan

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The db/db mice serve as a good model for type 2 diabetes characterized by hyperinsulinaemia and progressive hyperglycaemia. There are limited and conflicting data on the cardiovascular changes in this model. The aim of the present study was to characterize the cardiovascular and autonomic phenotype of male db/db mice and evaluate the role of angiotensin II AT(1) receptors. Radiotelemetry was used to monitor 24 h blood pressure (BP) in mice for 8 weeks. Parameters measured were mean arterial pressure (MAP), heart rate (HR) and their variabilities. In 8-week-old db/db mice, the MAP and BP circadian rhythms were not different from age-matched control mice, while HR and locomotor activity were decreased. With ageing, MAP gradually increased in db/db mice, and the 12 h light values did not dip significantly from the 12 h dark periods. In 14-week-old mice, MAP was increased during light (101 +/- 1 versus 117 +/- 2 mmHg, P < 0.01; control versus db/db mice) and dark phases (110 +/- 1.7 versus 121 +/- 3.1 mmHg, P < 0.01; control versus db/db mice). This increase in MAP was associated with a significant increase in plasma angiotensin-converting enzyme activity and angiotensin II levels. Chronic treatment with losartan (10 mg kg(-1) day(-1)) blocked the increase in MAP in db/db mice, with no effect in control animals. Spectral analysis was used to monitor autonomic cardiovascular function. The circadian rhythm observed in systolic arterial pressure variance and its low-frequency component in control mice was absent in db/db mice. There were no changes in HR variability and spontaneous baroreflex sensitivity between control and db/db mice. The results document an age-related increase in MAP in db/db mice, which can be reduced by antagonism of angiotensin II AT(1) receptors, and alterations in autonomic balance and components of the renin-angiotensin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although angiotensin II-induced venoconstriction has been demonstrated in the rat vena cava and femoral vein, the angiotensin II receptor subtypes (AT(1) or AT(2)) that mediate this phenomenon have not been precisely characterized. Therefore, the present study aimed to characterize the pharmacological receptors involved in the angiotensin II-induced constriction of rat venae cavae and femoral veins, as well as the opposing effects exerted by locally produced prostanoids and NO upon induction of these vasomotor responses. The obtained results suggest that both AT(1) and AT(2) angiotensin II receptors are expressed in both veins. Angiotensin II concentration-response curves were shifted toward the right by losartan but not by PD 123319 in both the vena cava and femoral vein. Moreover, it was observed that both 10(-5) M indomethacin and 10(-4) M L-NAME improve the angiotensin II responses in the vena cava and femoral vein. In conclusion, in the rat vena cava and femoral vein, angiotensin II stimulates AT(1) but not AT(2) to induce venoconstriction, which is blunted by vasodilator prostanoids and NO. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin II (Ang II) controls blood pressure, electrolyte balance, cell growth and vascular remodeling. Ang II activates NAD(P)H oxidase in several tissues with important function in the control of insulin secretion. Considering the concomitant occurrence of hypertension, insulin resistance and pancreatic B cell secretion impairment in the development of type II diabetes the aim of the present study was to evaluate the effect of ANG II on NAD(P)H oxidase activation in isolated pancreatic islets. We found that ANGII-induced superoxide generation via NAD(P)H oxidase activation and increased protein and mRNA levels of NAD(P)H oxidase subunits (p47(PHOX) and gp91(PHOX)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of ANG II on intracellular pH (pH(i)) recovery rate and AT(1) receptor translocation was investigated in transfected MDCK cells. The pHi recovery rate was evaluated by fluorescence microscopy using the fluorescent probe BCECF-AM. The human angiotensin II receptor isoform 1 (hAT(1)) translocation was analyzed by immunofluorescence and confocal microscope. Our data show that transfected cells in control situation have a pHi recovery rate of 0.219 +/- 0.017 pH U/min (n = 11). This value was similar to nontransfected cells [0.211 +/- 0.009 pH U/min (n = 12)]. Both values were significantly increased with ANG II (10(-9) M) but not with ANG II (10(-6) M). Losartan (10(-7) M) and dimethyl-BAPTA-AM (10(-7) M) decreased significantly the stimulatory effect of ANG II (10(-9) M) and induced an increase in Na+/H+ exchanger 1 (NHE-1) activity with ANG II (10(-6) M). Immunofluorescence studies indicated that in control situation, the hAT(1) receptor was predominantly expressed in cytosol. However, it was translocated to plasma membrane with ANG II (10(-9) M) and internalized with ANG II (10(-6) M). Losartan (10(-7) M) induced hAT(1) translocation to plasma membrane in all studied groups. Dimethyl-BAPTA-AM (10(-7) M) did not change the effect of ANG II (10(-9) M) on the hAT(1) receptor distribution but induced its accumulation at plasma membrane in cells treated with ANG II (10(-6) M). With ionomycin (10(-6) M), the receptor was accumulated in cytosol. The results indicate that, in MDCK cells, the effect of ANG II on NHE-1 activity is associated with ligand binding to AT(1) receptor and intracellular signaling events related to AT(1) translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.