10 resultados para gravitational 2-body problem
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper, we show the existence of new families of spatial central configurations for the n + 3-body problem, n >= 3. We study spatial central configurations where n bodies are at the vertices of a regular n-gon T and the other three bodies are symmetrically located on the straight line that is perpendicular to the plane that contains T and passes through the center of T. The results have simple and analytic proofs. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we show the existence of three new families of stacked spatial central configurations for the six-body problem with the following properties: four bodies are at the vertices of a regular tetrahedron and the other two bodies are on a line connecting one vertex of the tetrahedron with the center of the opposite face. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.
Resumo:
This paper presents the second part in our study of the global structure of the planar phase space of the planetary three-body problem, when both planets lie in the vicinity of a 2/1 mean-motion resonance. While Paper I was devoted to cases where the outer planet is the more massive body, the present work is devoted to the cases where the more massive body is the inner planet. As before, outside the well-known Apsidal Corotation Resonances (ACR), the phase space shows a complex picture marked by the presence of several distinct regimes of resonant and non-resonant motion, crossed by families of periodic orbits and separated by chaotic zones. When the chosen values of the integrals of motion lead to symmetric ACR, the global dynamics are generally similar to the structure presented in Paper I. However, for asymmetric ACR the resonant phase space is strikingly different and shows a galore of distinct dynamical states. This structure is shown with the help of dynamical maps constructed on two different representative planes, one centred on the unstable symmetric ACR and the other on the stable asymmetric equilibrium solution. Although the study described in the work may be applied to any mass ratio, we present a detailed analysis for mass values similar to the Jupiter-Saturn case. Results give a global view of the different dynamical states available to resonant planets with these characteristics. Some of these dynamical paths could have marked the evolution of the giant planets of our Solar system, assuming they suffered a temporary capture in the 2/1 resonance during the latest stages of the formation of our Solar system.
Resumo:
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.
Resumo:
The subject of this paper is the secular behaviour of a pair of planets evolving under dissipative forces. In particular, we investigate the case when dissipative forces affect the planetary semimajor axes and the planets move inwards/outwards the central star, in a process known as planet migration. To perform this investigation, we introduce fundamental concepts of conservative and dissipative dynamics of the three-body problem. Based on these concepts, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on the analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under the assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one of these secular modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the proper secular frequency of the system. We show that it is possible to reassemble the starting configurations and the migration history of the systems on the basis of their final states and consequently to constrain the parameters of the physical processes involved.
Resumo:
The theory of diffusion in many-dimensional Hamiltonian system is applied to asteroidal dynamics. The general formulation developed by Chirikov is applied to the NesvornA1/2-Morbidelli analytic model of three-body (three-orbit) mean-motion resonances (Jupiter-Saturn-asteroid). In particular, we investigate the diffusion along and across the separatrices of the (5, -2, -2) resonance of the (490) Veritas asteroidal family and their relationship to diffusion in semi-major axis and eccentricity. The estimations of diffusion were obtained using the Melnikov integral, a Hadjidemetriou-type sympletic map and numerical integrations for times up to 10(8) years.
Resumo:
The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic universes is discussed in the context of f (R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the universe. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, (similar to 10(15)-10(16) G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, the problem is more difficult since, according to general relativity it has ""no hair"" (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas`s tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields similar to 10(15)-10(16) G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the similar to 10(15)-10(16) G fields when the compact object is a neutron star, but also when it is a black hole.
Resumo:
In this work we show that the eigenvalues of the Dirichlet problem for the biharmonic operator are generically simple in the set Of Z(2)-symmetric regions of R-n, n >= 2, with a suitable topology. To accomplish this, we combine Baire`s lemma, a generalised version of the transversality theorem, due to Henry [Perturbation of the boundary in boundary value problems of PDEs, London Mathematical Society Lecture Note Series 318 (Cambridge University Press, 2005)], and the method of rapidly oscillating functions developed in [A. L. Pereira and M. C. Pereira, Mat. Contemp. 27 (2004) 225-241].