Chirikov diffusion in the asteroidal three-body resonance (5,-2,-2)
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
19/10/2012
19/10/2012
2010
|
Resumo |
The theory of diffusion in many-dimensional Hamiltonian system is applied to asteroidal dynamics. The general formulation developed by Chirikov is applied to the NesvornA1/2-Morbidelli analytic model of three-body (three-orbit) mean-motion resonances (Jupiter-Saturn-asteroid). In particular, we investigate the diffusion along and across the separatrices of the (5, -2, -2) resonance of the (490) Veritas asteroidal family and their relationship to diffusion in semi-major axis and eccentricity. The estimations of diffusion were obtained using the Melnikov integral, a Hadjidemetriou-type sympletic map and numerical integrations for times up to 10(8) years. FAPESP (Brazil) CNPq CAPES |
Identificador |
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, v.108, n.1, p.35-58, 2010 0923-2958 http://producao.usp.br/handle/BDPI/27076 10.1007/s10569-010-9290-6 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Celestial Mechanics & Dynamical Astronomy |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Chaotic motion #Chirikov theory #Asteroidal belt #Nesvorny-Morbidelli model #Three-body resonances #Chaotic diffusion rate #Hadjidemetriou`s symplectic mapping #MEAN MOTION RESONANCES #KIRKWOOD GAPS #STABLE CHAOS #ARNOLD DIFFUSION #HECUBA GAP #BELT #SYSTEMS #ORBITS #CHRONOLOGY #FAMILIES #Astronomy & Astrophysics #Mathematics, Interdisciplinary Applications |
Tipo |
article original article publishedVersion |