Chirikov diffusion in the asteroidal three-body resonance (5,-2,-2)


Autoria(s): CACHUCHO, F.; CINCOTTA, P. M.; FERRAZ-MELLO, S.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

19/10/2012

19/10/2012

2010

Resumo

The theory of diffusion in many-dimensional Hamiltonian system is applied to asteroidal dynamics. The general formulation developed by Chirikov is applied to the NesvornA1/2-Morbidelli analytic model of three-body (three-orbit) mean-motion resonances (Jupiter-Saturn-asteroid). In particular, we investigate the diffusion along and across the separatrices of the (5, -2, -2) resonance of the (490) Veritas asteroidal family and their relationship to diffusion in semi-major axis and eccentricity. The estimations of diffusion were obtained using the Melnikov integral, a Hadjidemetriou-type sympletic map and numerical integrations for times up to 10(8) years.

FAPESP (Brazil)

CNPq

CAPES

Identificador

CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, v.108, n.1, p.35-58, 2010

0923-2958

http://producao.usp.br/handle/BDPI/27076

10.1007/s10569-010-9290-6

http://dx.doi.org/10.1007/s10569-010-9290-6

Idioma(s)

eng

Publicador

SPRINGER

Relação

Celestial Mechanics & Dynamical Astronomy

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Chaotic motion #Chirikov theory #Asteroidal belt #Nesvorny-Morbidelli model #Three-body resonances #Chaotic diffusion rate #Hadjidemetriou`s symplectic mapping #MEAN MOTION RESONANCES #KIRKWOOD GAPS #STABLE CHAOS #ARNOLD DIFFUSION #HECUBA GAP #BELT #SYSTEMS #ORBITS #CHRONOLOGY #FAMILIES #Astronomy & Astrophysics #Mathematics, Interdisciplinary Applications
Tipo

article

original article

publishedVersion