14 resultados para cyanobacterial mats
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.
Resumo:
Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
The cyanobacterial population in the Cajati waste stabilization pond system (WSP) from Sao Paulo State, Brazil was assessed by cell isolation and direct microscope counting techniques. Ten strains, belonging to five genera (Synechococcus, Merismopedia, Leptolyngbya, Limnothrix, and Nostoc), were isolated and identified by morphological and molecular analyses. Morphological identification of the isolated strains was congruent with their phylogenetic analyses based on 16S rDNA gene sequences. Six cyanobacterial genera (Synechocystis, Aphanocapsa, Merismopedia, Lyngbya, Phormidium, and Pseudanabaena) were identified by direct microscope inspection. Both techniques were complementary, since, of the six genera identified by direct microscopic inspection, only Merismopedia was isolated, and the four other isolated genera were not detected by direct inspection. Direct microscope counting of preserved cells showed that cyanobacteria were the dominant members (> 90%) of the phytoplankton community during both periods evaluated (summer and autumn). ELISA tests specific for hepatotoxicmicrocystins gave positive results for six strains (Synechococcus CENA108, Merismopedia CENA106, Leptolyngbya CENA103, Leptolyngbya CENA112, Limnothrix CENA109, and Limnothrix CENA110), and for wastewater samples collected from raw influent (3.70 mu g microcystins/l) and treated effluent (3.74 mu g microcystins/l) in summer. Our findings indicate that toxic cyanobacteria in WSP systems are of concern, since the treated effluent containing cyanotoxins will be discharged into rivers, irrigation channels, estuaries, or reservoirs, and can affect human and animal health.
Resumo:
The acute poisoning of chronic renal patients during hemodialysis sessions in 1996 in Caruaru City (Pernambuco State, Brazil) stimulated an intensive search for the cause of this severe complication. This search culminated in the identification of microcystins (MC), hepatotoxic cyclic heptapeptides produced by cyanobacteria, as the causative agents. More than ten years later, additional research data provides us with a better understanding of the factors related to cyanobacterial bloom occurrence and production of MC in Brazil and other South American countries. The contamination of water bodies and formation of toxic blooms remains a very serious concern, especially in countries in which surface water is used as the main source for human consumption. The purpose of this review is to highlight the discoveries of the past 15 years that have brought South American researchers to their current level of understanding of toxic cyanobacteria species and that have contributed to their knowledge of factors related to MC production, mechanisms of action and consequences for human health and the environment. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Anatoxin-a(s) is a potent irreversible inhibitor of the enzyme acetylcholinesterase with a unique N-hydroxyguanidine methylphosphate ester chemical structure. Determination of this toxin in environmental samples is hampered by the lack of specific methods for its detection. Using the toxic strain of Anabaena lemmermani PH-160 B as positive control, the fragmentation characteristics of anatoxin-a(s) under collision-induced dissociation conditions have been investigated and new LC-MS/MS methods proposed. Recommended ion transitions for correct detection of this toxin are 253 > 58, 253 > 159, 235 > 98 and 235 > 96. Chromatographic separation is better achieved under HILIC conditions employing a ZIC-HILIC column. This method was used to confirm for the first time the production of anatoxin-a(s) by strains of Anabaena oumiana ITEP-025 and ITEP-026. Considering no standard solutions are commercially available, our results will be of significant use for the correct identification of this toxin by LC-MS/MS. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Block copolymers containing isosorbide succinate and L-lactic acid repeating units with different mass compositions were synthesized in two steps: bulk ring-opening copolymerization from L-lactide and poli(isosorbide succinate) (PIS) preoligomer, in the presence of tin(II) 2-ethylhexanoate as catalyst. followed by chain extension in solution by using hexamethylene diisocyanate. Poly(L-lactide) (PLLA) and a chain extension product from PIS were also obtained, for comparison. SEC, (1)H and (13)C NMR, MALDI-TOFMS, WAXD, DSC, TG, and contact angle measurements were used in their characterization. The incorporation of isosorbide succinate into PLLA main backbone had minor effect on the thermal stability and the T(g) of the products. However, it reduced the crystallinity and increased the surface energy in relation to PLLA. Nonwoven mats of the block copolymers and PLLA obtained by electrospinning technique were submitted to fibroblasts 3T3-L1 cell culture. The copolymers presented enhanced cell adhesion and proliferation rate as revealed by MTT assay and SEM images. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins (MC) are a family of hepatotoxic cyclic heptapeptides produced by a number of different cyanobacterial species. Considering the recent advances in the characterization of deprotonated peptides by mass spectrometry, the fragmentation behavior of four structurally related microcystin compounds was investigated using collision-induced dissociation (CID) experiments on an orbitrap mass spectrometer. It is demonstrated in this study that significant structural information can be obtained from the CID spectra of deprotonated microcystins. A predominant ring-opening reaction at the isoMeAsp residue, as well as two major complementary fragmentation pathways, was observed, reducing the complexity of the product ion spectra in comparison with spectra observed from protonated species. This proposed fragmentation behavior was applied to characterize [Leu(1)]MC-LR from a cyanobacterial cell extract. In conclusion, CID spectra of microcystins in the negative ion mode provide rich structurally informative mass spectra which greatly enhance confidence in structural assignments, in particular when combined with complementary positive ion CID spectra. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, Sao Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 165 rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 165 rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, Sao Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6 mu g MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The end of the Neoproterozoic era is punctuated by two global glacial events marked by the presence of glacial deposits overlaid by cap carbonates. Duration of glacial intervals is now consistently constrained to 3-12 million years but the duration of the post-glacial transition is more controversial due to the uncertainty in cap dolostone sedimentation rates. Indeed, the presence of several stratabound magnetic reversals in Brazilian cap dolostones recently questioned the short sedimentation duration (a few thousand years at most) that was initially suggested for these rocks. Here, we present new detailed magnetostratigraphic data of the Mirassol d`Oeste cap dolostones (Mato Grosso, Brazil) and ""bomb-spike"" calibrated AMS (14)C data of microbial mats from the Lagoa Vermelha (Rio de Janeiro, Brazil). We also compile sedimentary, isotopic and microbiological data from post-Marinoan outcrops and/or recent depositional analogues in order to discuss the deposition rate of Marinoan cap dolostones and to infer an estimation of the deglaciation duration in the snowball Earth aftermath. Taken together, the various data point to a sedimentation duration in the range of a few 10(5) years. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Previous works suggested that Pleurostima purpurea (Velloziaceae-Barbacenioideae) shows a remarkable capacity to endure desiccation of its vegetative tissues. P. purpurea occurs in monocotyledons mats on soil islands in the Pao de Acucar (Sugar Loaf) one of the most recognizable rock outcrops of the world, in Rio de Janeiro, southeastern Brazil. Mats of P. purpurea occur in cliffs by the sea some meters above the tidal zone. Although living in rock outcrops almost devoid of any soil cover, P. purpurea seems to occur preferably on less exposed rock faces and slightly shady sites. Usually, less extreme adaptations to drought would be expected in plants with the habitat preference of P. purpurea. Relying on this observation, we argue if a combination of different strategies of dealing with low water availability can be found in P. purpurea as on other desiccation tolerant angiosperms. This study aims to examine the occurrence of desiccation tolerant behavior in P. purpurea together with the expression of drought avoidance mechanisms during dehydration progression. For this, it was analyzed the gas exchanges, leaf pigments and relative leaf water content during desiccation and rehydration of cultivated mature individuals. P. purpurea behaved like typical drought avoiders under moderated drought condition with stomatal closure occurring around a relative leaf water content up to 90%. During this process, it was observed a delay in the leaf relative water content (RWC(leaf)) decrease comparing to the plant-soil relative water content (RWC(plant-soil)). As soil dehydration worsened, gas exchanges restrictions progressed until a lack of activity which characterizes anabiosis. The loss of chlorophyll occurs before the end of total dehydration, characterizing the presence of poikilochlorophylly. The chlorophyll degradation follows the RWC(leaf) decrease, which achieved the minimum average value of 17% without incurring in leaf abscission. The chlorophyll re-synthesis seems to start well after the full rehydration of the leaf. During all of this process, carotenoid content remained stable. These results are coherent with a combination of drought avoidance and desiccation tolerance in P. purpurea which seems to be coherent with the amplitude of water availability in the rock outcrop habitat where it occurs, suggesting that the periods of water availability are sufficiently long for the success of the costly desiccation tolerant behavior but too short to make a typical drought avoider species win the competition for exploring the rock outcrop substrate where P. purpurea occurs.
Resumo:
The moss Tayloria dubyi (Splachnaceae) is endemic to the subantarctic Magallanes ecoregion where it grows exclusively on bird dung and perhaps only on feces of the goose Chloephaga picta, a unique habitat among Splachnaceae. Some species of Splachnaceae from the Northern Hemisphere are known to recruit coprophilous flies as a vector to disperse their spores by releasing intense odors mimicking fresh clung or decaying corpses. The flies land on the capsule, and may get in contact with the protruding mass of spores that stick to the insect body. The dispersal strategy relies on the spores falling off when the insect reaches fresh droppings or carrion. Germination is thought to be rapid and a new population is quickly established over the entire substrate. The objectives of this investigation were to determine whether the coprophilous T. dubyi attracts flies and to assess the taxonomic diversity of the flies visiting this moss. For this, fly traps were set up above mature sporophyte bearing populations in two peatlands on Navarino Island. We captured 64 flies belonging to the Muscidae (Palpibracus chilensis), Tachinidae (Dasyuromyia sp) and Sarcophagidae (not identified to species) above sporophytes of T. dubyi, whereas no flies were captured in control traps set up above Sphagnum mats nearby.
Resumo:
Microcystins (MCs) produced by some freshwater cyanobacterial species possess potent liver toxicity as evidenced by acute neutrophil infiltration. Here, we investigate the ability of three structurally distinct toxins (MC-LA, MC-LR, and MC-YR) to evoke neutrophil recruitment per se and their effects on migration pathways. Intravital Microscopic Studies showed that topical application of only MC-LR enhanced the numbers of rolling and adhered leukocytes in the endothelium of postcapillary mesenteric venules. The latter effects may be dependent upon induction of the synthesis and expression Of L-selectin and beta(2)-integrin in neutrophils, as assessed by flow cytometry and RT-PCR, respectively. Conversely, the three toxins promoted direct locomotion of neutrophils and enhanced their migration in response to NO, as measured by Boyden chamber assays, and increased intracellular calcium, a messenger in the chemotaxic process. In conclusion, our results show that MCs act on specific pathways of neutrophil recruitment, indicating their potential effect on neutrophils activation. (C) 2009 Elsevier Inc. All rights reserved.