91 resultados para bacteria, degrading pollutants, microarrays, environmental activity, bioremediation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We evaluated short-term effects of sidestream cigarette smoke (SSCS) exposure on baroreflex function in spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) normotensive rats. Rats were exposed to SSCS during three weeks, 180min, five days per week, in a concentration of carbon monoxide (CO) between 100 and 300ppm. We observed that SSCS exposure increased tachycardic peak and heart rate range while it attenuated bradycardic reflex in WKY. In respect to SHR, SSCS also increased tachycardic peak. Taken together, our data suggests that three weeks of exposure to SSCS affects the sympathetic and parasympathetic component of the baroreflex in normotensive WKY while it tended to affect the sympathetic component in SHR.
Resumo:
The objective of this research was to evaluate the effects of 2 levels of raw milk somatic cell count (SCC) on the composition of Prato cheese and on the microbiological and sensory changes of Prato cheese throughout ripening. Two groups of dairy cows were selected to obtain low-SCC (<200,000 cells/mL) and high-SCC (>700,000 cells/mL) milks, which were used to manufacture 2 vats of cheese. The pasteurized milk was evaluated according to the pH, total solids, fat, total protein, lactose, standard plate count, coliforms at 45 degrees C, and Salmonella spp. The cheese composition was evaluated 2 d after manufacture. Lactic acid bacteria, psychrotrophic bacteria, and yeast and mold counts were carried out after 3, 9, 16, 32, and 51 d of storage. Salmonella spp., Listeria monocytogenes, and coagulase-positive Staphylococcus counts were carried out after 3, 32, and 51 d of storage. A 2 x 5 factorial design with 4 replications was performed. Sensory evaluation of the cheeses from low- and high-SCC milks was carried out for overall acceptance by using a 9-point hedonic scale after 8, 22, 35, 50, and 63 d of storage. The somatic cell levels used did not affect the total protein and salt: moisture contents of the cheeses. The pH and moisture content were higher and the clotting time was longer for cheeses from high-SCC milk. Both cheeses presented the absence of Salmonella spp. and L. monocytogenes, and the coagulase-positive Staphylococcus count was below 1 x 10(2) cfu/g throughout the storage time. The lactic acid bacteria count decreased significantly during the storage time for the cheeses from both low- and high-SCC milks, but at a faster rate for the cheese from high-SCC milk. Cheeses from high-SCC milk presented lower psychrotrophic bacteria counts and higher yeast and mold counts than cheeses from low- SCC milk. Cheeses from low- SCC milk showed better overall acceptance by the consumers. The lower overall acceptance of the cheeses from high-SCC milk may be associated with texture and flavor defects, probably caused by the higher proteolysis of these cheeses.
Resumo:
Whole cells of hydrocarbon-degrading bacteria, isolated from polluted sediments in the Santos Estuary (Baixada Santista, Sao Paulo, Brazil), were able to catalyse oxidoreduction reactions with various substituted phenylethanols and acetophenones as substrates. A number of substituted phenylethanols were formed with high (>99 %) enantiomeric excess. The results of microbial oxidation of phenylethanols 2, 3, 5-7 by Acinetobacter sp. 6.4T and the reduction of acetophenones 1a-6a by Serratia marcescens 5.4T showed that the bacteria used as biocatalysts in this study present significant potential for exploitation in biotechnological processes. The reduction of prochiral acetophenones by Serratia marcescens 3.5T yielded optically active alcohols with 90-99 % enantiomeric excess, and Acinetobacter sp. 6.4T is a potential biocatalyst for the oxidation of alcohols.
Resumo:
Studies on keratinolytic microorganisms have been mainly related to their biotechnological applications and association with animal pathologies. However, these organisms have an ecological relevance to recycling keratinous residues in nature. This work aimed to select and identify new culturable feather-degrading bacteria isolated from soils of Brazilian Amazon forest and Atlantic forest. Bacteria that were isolated from temperate soils and bacteria from Amazonian basin soil were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified according to their morphological and biochemical characteristics. Also, molecular identification based on 165 rDNA gene sequencing was carried out. A total of 24 proteolytic and 20 feather-degrading isolates were selected; Most of the isolates were from the Bacillus genus (division Firmicutes), but one Aeromonas, two Serratia (gamma-Proteobacteria), and one Chryseobacterium (Cytophaga-Flavobacterium group). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, different reactions in vitro between an environmental bacterial isolate and fungal species were related. The Gram-positive bacteria had terminal and subterminal endospores, presented metabolic characteristics of mesophilic and acidophilic growth, halotolerance, positive to nitrate reduction and enzyme production, as caseinase and catalase. The analysis of partial sequences containing 400 to 700 bases of the 16S ribosomal RNA gene showed identity with the genus Bacillus. However, its identity as B. subtilis was confirmed after analyses of the rpoB, gyrA, and 16S rRNA near-full-length sequences. Strong inhibitory activity of environmental microorganisms, such as Penicillium sp, Aspergillus flavus, A. niger, and phytopathogens, such as Colletotrichum sp, Alternaria alternata, Fusarium solani and F. oxysporum f.sp vasinfectum, was shown on co-cultures with B. subtilis strain, particularly on Sabouraud dextrose agar (SDA) and DNase media. Red and red-ochre color pigments, probably phaeomelanins, were secreted by A. alternata and A. niger respectively after seven days of co-culture.
Resumo:
Six pimarane-type diterpenes isolated from Viguiera arenaria Baker and two semi-synthetic derivatives were evaluated in vitro against a panel of representative microorganisms responsible for dental root canal infections. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Porphyromonas gingivalis, Prevotella nigrescens, Prevotella intermedia, Prevotella buccae, Fusobacterium nucleatum, Bacteroides fragilis, Actinomyces naeslundii, Actinomyces viscosus, Peptostreptococcus micros, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans. The compounds ent-pimara-8(14), 15-dien-19-oic acid, its sodium salt and ent-8(14), 15-pimaradien-3 beta-ol were the most active, displaying MIC values ranging from 1 to 10 mu g mL(-1). The results also allow us to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to the discovery of new chemicals for use as a complement to instrumental endodontic procedures.
Resumo:
The kinetics and mechanism of the thermal activation of peroxydisulfate, in the temperature range from 60 to 80 degrees C, was investigated in the presence and absence of sodium formate as an additive to turn the oxidizing capacity of the reaction mixture into a reductive one. Trichloroacetic acid, TCA, whose degradation by a reductive mechanism is well reported in the literature, was used as a probe. The chemistry of thermally activated peroxydisulfate is described by a reaction scheme involving free radical generation. The proposed mechanism is evaluated by a computer simulation of the concentration profiles obtained under different experimental conditions. In the presence of formate, SO(4)(center dot-) radicals yield CO(2)(center dot-), which are the main species available for degrading TCA. Under the latter conditions, TCA is more efficiently depleted than in the absence of formate, but otherwise identical conditions of temperature and [S(2)O(8)(2-)]. We therefore conclude that activated peroxydisulfate in the presence of formate as an additive is a convenient method for the mineralization of substrates that are refractory to oxidation. such as perchlorinated hydrocarbons and TCA. This method has the advantage that leaves no toxic residues. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The application of tannery sludge to soils is a form of recycling; however, few studies have examined the impacts of this practice on soil microbial properties. We studied effects of two applications (2006 and 2007) of tannery sludge (with a low chromium content) on the structure of the bacterial community and on the microbial activity of soils. We fertilized an agricultural area in Rolandia, Parana state, Brazil with different doses of sludge based on total N content, which ranged from 0 to 1200 kg N ha(-1). Sludge remained on the soil surface for three months before being plowed. Soils were sampled seven times during the experiment. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE), was modified by the application of tannery sludge. Soon after the first application, there was clear separation between the bacterial communities in different treatments, such that each dose of sludge was associated with a specific community. These differences remained until 300 days after application and also after the second sludge application, but 666 days after the beginning of the experiment no differences were found in the bacterial communities of the lowest doses and the control. The principal response curve (PRC) analysis showed that the first sludge application strongly stimulated biological activity even 300 days after application. The second application also stimulated activity, but at a lower magnitude and for a shorter time, given that 260 days after the second application there was no difference in biological activity among treatments. PRC also showed that the properties most influenced by the application of tannery sludge were enzymatic activities related to N cycling (asparaginase and urease). The redundancy analysis (RDA) showed that tannery sludge`s influence on microbial activity is mainly related to increases in inorganic N and soil pH. Results showed that changes in the structure of the bacterial community in the studied soils were directly related to changes of their biological activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of Gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway that converts tryptophan to PRN is composed of four genes, prnA through D, whose diversity, genomic context and spread over bacterial genomes are poorly understood. Therefore, we launched an endeavour aimed at retrieving, by in vitro and in silico means, diverse bacteria carrying the prnABCD biosynthetic loci in their genomes. Analysis of polymorphisms of the prnD gene sequences revealed a high level of conservation between Burkholderia, Pseudomonas and Serratia spp. derived sequences. Whole-operon- and prnD-based phylogeny resulted in tree topologies that are incongruent with the taxonomic status of the evaluated strains as predicted by 16S rRNA gene phylogeny. The genomic composition of c. 20 kb DNA fragments containg the PRN operon varied in different strains. Highly conserved and distinct transposase-encoding genes surrounding the PRN biosynthetic operons of Burkholderia pseudomallei strains were found. A prnABCD-deprived genomic region in B. pseudomallei strain K96243 contained the same gene composition as, and shared high homology with, the flanking regions of the PRN operon in B. pseudomallei strains 668, 1106a and 1710b. Our results strongly suggest that the PRN biosynthetic operon is mobile. The extent, frequency and promiscuity of this mobility remain to be understood.
Resumo:
In the present work, the anticariogenic activities of nine labdane type-diterpenes and four sesquiterpenes were investigated. Among these metabolites, (-)-copalic acid (CA) was the most active compound displaying MIC values very promising (ranging from 2.0 to 6.0 mu g/mL) against the main microorganisms responsible for dental caries: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis and Lactobacillus casei. Time kill assays performed with CA against the primary causative agent (S. mutans) revealed that, in the first 12 h, this compound only inhibits the growth of the inoculum (bacteriostatic effect). However, its bactericidal effect is clearly noted thereafter (between 12 and 24 h). Also, CA did not show a synergistic effect when combined with the anticariogenic gold standard (chlorhexidine, CHD) in the checkerboard assays against S. mutans. In conclusion, the results points out CA as an important metabolite in the search for new effective anticariogenic agents. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
There is worldwide recognition that the burden of noncommunicable diseases (NCDs) and obesity-related health problems is rapidly increasing in low- and middle-income countries. Environmental determinants of obesity are likely to differ between countries, particularly in those undergoing rapid socioeconomic and nutrition transitions such as Brazil. This study aims to describe some built environment and local food environment variables and to explore their association with the overweight rate and diet and physical activity area-level aggregated indicators of adults living in the city of Sao Paulo, the largest city in Brazil. This formative study includes an ecological analysis of environmental factors associated with overweight across 31 submunicipalities of the city of Sao Paulo using statistical and spatial analyses. Average prevalence of overweight was 41.69% (95% confidence interval 38.74, 44.64), ranging from 27.14% to 60.75% across the submunicipalities. There was a wide geographical variation of both individual diet and physical activity, and indicators of food and built environments, favoring wealthier areas. After controlling for area socioeconomic status, there was a positive correlation between regular fruits and vegetables (FV) intake and density of FV specialized food markets (r = 0.497; p < 0.001), but no relationship between fast-food restaurant density and overweight prevalence was found. A negative association between overweight prevalence and density of parks and public sport facilities was seen (r = -0.527; p < 0.05). Understanding the relationship between local neighborhood environments and increasing rates of poor diet, physical activity, and obesity is essential in countries undergoing rapid economic and urban development, such as Brazil, in order to provide insights for policies to reduce increasing rates of NCDs and food access and health inequalities.
Resumo:
Drug abuse is a concerning health problem in adults and has been recognized as a major problem in adolescents. induction of immediate-early genes (IEG), such as c-Fos or Egr-1, is used to identify brain areas that become activated in response to various stimuli, including addictive drugs. It is known that the environment can alter the response to drugs of abuse. Accordingly, environmental cues may trigger drug-seeking behavior when the drug is repeatedly administered in a given environment. The goal of this study was first to examine for age differences in context-dependent sensitization and then evaluate IEG expression in different brain regions. For this, groups of mice received i.p. ethanol (2.0 g/kg) or saline in the test apparatus, while other groups received the solutions in the home cage, for 15 days. One week after this treatment phase, mice were challenged with ethanol injection. Acutely, ethanol increased both locomotor activity and IEG expression in different brain regions, indistinctly, in adolescent and adult mice. However, adults exhibited a typical context-dependent behavioral sensitization following repeated ethanol treatment, while adolescent mice presented gradually smaller locomotion across treatment, when ethanol was administered in a paired regimen with environment. Conversely, ethanol-treated adolescents expressed context-independent behavioral sensitization. Overall, repeated ethanol administration desensitized IEG expression in both adolescent and adult mice, but this effect was greatest in the nucleus accumbens and prefrontal cortex of adolescents treated in the context-dependent paradigm. These results suggest developmental differences in the sensitivity to the conditioned and unconditioned locomotor effects of ethanol. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Anticarsia gemmatalis) were the objectives of this study. Twelve aerobic and anaerobic isolates of proteolytic bacteria were obtained from the caterpillar gut in calcium caseinate agar. The number of colony forming units (CFUs) of proteolytic bacteria was higher when the bacteria were extracted from caterpillars reared on artificial diet rather than on soybean leaves (1.73 +/- 0.35 X 10(3) and 0.55 +/- 0.22 X 10(3) CFU/mg gut, respectively). The isolated bacteria were divided into five distinct groups, according to their polymerase chain reaction restriction fragment-length polymorphism profiles. After molecular analysis, biochemical tests and fatty acid profile determination, the bacteria were identified as Bacillus subtilis, Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii, and Staphylococcus xylosus. Bacterial proteolytic activity was assessed through in vitro colorimetric assays for (general) proteases, serine proteases, and cysteine proteases. The isolated bacteria were able of hydrolyzing all tested substrates, except Staphylococcus xylosus, which did not exhibit serine protease activity. This study provides support for the hypothesis that gut proteases from velvetbean caterpillar are not exclusively secreted by the insect cells but also by their symbiotic gut bacteria. The proteolytic activity from gut symbionts of the velvetbean caterpillar is suggestive of their potential role minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean, with implications for the management of this insect pest species.
Resumo:
The maximum inhibitory dilution (MID) of triclosan-based mouthwashes against 28 Staphylococcus aureus strains was evaluated. Dilutions ranging from 1/10 to 1/655,360 were prepared. Strains were inoculated using a Steers multipoint inoculator. The MID was considered as the maximum dilution capable of inhibiting microorganism growth. The mouthwashes presented different MIDs.