15 resultados para Wavelet

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an improved voice activity detection (VAD) algorithm using wavelet and support vector machine (SVM) for European Telecommunication Standards Institution (ETS1) adaptive multi-rate (AMR) narrow-band (NB) and wide-band (WB) speech codecs. First, based on the wavelet transform, the original IIR filter bank and pitch/tone detector are implemented, respectively, via the wavelet filter bank and the wavelet-based pitch/tone detection algorithm. The wavelet filter bank can divide input speech signal into several frequency bands so that the signal power level at each sub-band can be calculated. In addition, the background noise level can be estimated in each sub-band by using the wavelet de-noising method. The wavelet filter bank is also derived to detect correlated complex signals like music. Then the proposed algorithm can apply SVM to train an optimized non-linear VAD decision rule involving the sub-band power, noise level, pitch period, tone flag, and complex signals warning flag of input speech signals. By the use of the trained SVM, the proposed VAD algorithm can produce more accurate detection results. Various experimental results carried out from the Aurora speech database with different noise conditions show that the proposed algorithm gives considerable VAD performances superior to the AMR-NB VAD Options 1 and 2, and AMR-WB VAD. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic Time Warping (DTW), a pattern matching technique traditionally used for restricted vocabulary speech recognition, is based on a temporal alignment of the input signal with the template models. The principal drawback of DTW is its high computational cost as the lengths of the signals increase. This paper shows extended results over our previously published conference paper, which introduces an optimized version of the DTW I hat is based on the Discrete Wavelet Transform (DWT). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a new wavelet-based algorithm for low-cost computation of the cepstrum. It can be used for real time precise pitch determination in automatic speech and speaker recognition systems. Many wavelet families are examined to determine the one that works best. The results confirm the efficacy and accuracy of the proposed technique for pitch extraction. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper generalizes the methodology of Cat and Brown [Cai, T., Brown, L.D., 1998. Wavelet shrinkage for nonequispaced samples. The Annals of Statistics 26, 1783-1799] for wavelet shrinkage for nonequispaced samples, but in the presence of correlated stationary Gaussian errors. If the true function is a member of a piecewise Holder class, it is shown that, even for long memory errors, the rate of convergence of the procedure is almost-minimax relative to the independent and identically distributed errors case. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide-field B- and R-band images observed with the LAICA camera at the 3.5-m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flat-fielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analysed with the OV_WAV package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26 per cent of the total light of HCG 15, 35 and 51, respectively, are in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be its low as 28.4 B mag arcsec(-2). Dynamical masses, crossing times and mass-to-light ratios were recalculated using the new group parameters. Also tidal features were analysed using the wavelet technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Texture is one of the most important visual attributes for image analysis. It has been widely used in image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been proposed as an approach for texture analysis with promising results. This approach uses walkers (called tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody important characteristics related to tourist transitivity in the image. Computed from these graphs, the statistical position (degree mean) and dispersion (entropy of two vertices with the same degree) measures are used as texture descriptors. A comparison with traditional texture analysis methods is performed to illustrate the high performance of this novel approach. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a novel method of plant classification using Gabor wavelet filters to extract texture filters in a foliar surface. The aim of this promising method is to add to the results obtained by other leaf attributes (such as shape, contour, color, among others), increasing, therefore, the percentage of classification of plant species. To corroborate the efficiency of the technique, an experiment using 20 species from Brazilian flora was done and discussed. The results are also compared with texture Fourier descriptors and cooccurrence matrices. (C) 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 236-243, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20201

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel statistical test is introduced to compare two locally stationary time series. The proposed approach is a Wald test considering time-varying autoregressive modeling and function projections in adequate spaces. The covariance structure of the innovations may be also time- varying. In order to obtain function estimators for the time- varying autoregressive parameters, we consider function expansions in splines and wavelet bases. Simulation studies provide evidence that the proposed test has a good performance. We also assess its usefulness when applied to a financial time series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.