18 resultados para Vasodilator Agents
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Tenofovir disoproxil fumarate (TDF) is a first-line drug used in patients with highly active retroviral disease; however, it can cause renal failure associated with many tubular anomalies that may be due to down regulation of a variety of ion transporters. Because rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist induces the expression of many of these same transporters, we tested if the nephrotoxicity can be ameliorated by its use. High doses of TDF caused severe renal failure in rats accompanied by a reduction in endothelial nitric-oxide synthase and intense renal vasoconstriction; all of which were significantly improved by rosiglitazone treatment. Low-dose TDF did not alter glomerular filtration rate but produced significant phosphaturia, proximal tubular acidosis, polyuria and a reduced urinary concentrating ability. These alterations were caused by specific downregulation of the sodium-phosphorus cotransporter, sodium/hydrogen exchanger 3 and aquaporin 2. A Fanconi`s-like syndrome was ruled out as there was no proteinuria or glycosuria. Rosiglitazone reversed TDF-induced tubular nephrotoxicity, normalized urinary biochemical parameters and membrane transporter protein expression. These studies suggest that rosiglitazone treatment might be useful in patients presenting with TFV-induced nephrotoxicity especially in those with hypophosphatemia or reduced glomerular filtration rate.
Resumo:
In this report we disclose the synthesis, vasodilatory activity, and identification of bioactive conformation of new N-acylhydrazone and N-methyl-N-acylhydrazone derivatives, structurally designed by bioisosteric replacements of previously described cardioactive compounds LASSBio-294 and its N-methyl derivative LASSBio-785. Some of these novel derivatives presented improved vasorelaxant properties, being new cardiovascular drug candidates. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Statement of problem. In vitro studies on the retentive strengths of various cements used to retain posts have reported conflicting results. Purpose. The purpose of this study was to compare the tensile strength of commercially pure titanium and type III cast gold-alloy posts and cores cemented with zinc phosphate or resin cement. Material and methods. Forty-two extracted human canines were endoclontically treated. The root preparations were accomplished using Largo reamers (10 mm in depth and 1.7 mm in diameter). Acrylic resin patterns for the posts and cores were made, and specimens were cast in commercially pure titanium and in type III gold alloy (n=7). Fourteen titanium cast posts and cores were submitted to surface treatment with Kroll acid solution and to scanning electron microscopy (SEM), before and after acid etching. The groups (n=7) were cemented with zinc phosphate cement or resin cement (Panavia F). Tensile strengths were measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The results (Kgf) were statistically analyzed by 2-way ANCIVA (alpha=.05). Results. The 2-way ANOVA indicated that there were no significant differences among the groups tested. Retentive means for zinc phosphate and Panavia F cements were statistically similar. The bond strength was not Influenced by the alloy, the luting material, or the etching treatment. SEM analysis indicated that the etched surfaces were smoother than those that did not receive surface treatment, but this fact did not influence the results. Conclusions. Commercially pure titanium cast posts and cores cemented with zinc phosphate and resin cements demonstrated similar mean tensile retentive values. Retentive values were also similar to mean values recorded for cast gold-alloy posts and cores cemented with zinc phosphate cement and resin cements.
Resumo:
In recent years. studies in behavioral pharmacology have shown the involvement of dopaminergic mechanisms in avoidance behavior as assessed by the two-way active avoidance test (CAR). Changes in dopaminergic transmission also occur in response to particularly threatening challenges. However, studies on the effects of benzodiazepine (BZD) drugs ill this test are still unclear. Given the interplay of dopamine and other neurotransmitters in the neurobiology of anxiety and schizophrenia the aim of this work was to evaluate the effects of systemic administration of midazolam, the dopaminergic agonist apomorphine, and the D(2) receptor antagonist sulpiride using the CAR, a test that shows good sensitivity to typical neuroleptic drugs. Whereas midazolam did not alter the avoidance response. apomorphine increased and sulpiride reduced them in this test. Escape was not affected by any drug treatments. Heightened avoidance was not associated with the increased motor activity caused by apomorphine. In contrast with the benzodiazepine midazolam, activation of post-synaptic D(2) receptors with apomorphine facilitates, whereas the D(2) receptor antagonism with sulpiride inhibited the acquisition of the avoidance behavior. Together, these results bring additional evidence for a role of D(2) mechanisms in the acquisition of the active avoidance. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Hyperglycemia, which increases O-linked beta-N-acetylglucosamine (O-GlcNAc) proteins, leads to changes in vascular reactivity. Because vascular dysfunction is a key feature of arterial hypertension, we hypothesized that vessels from deoxycorticosterone acetate and salt (DOCA-salt) rats exhibit increased O-GlcNAc proteins, which is associated with increased reactivity to constrictor stimuli. Aortas from DOCA rats exhibited increased contraction to phenylephrine (E(max) [mN] = 17.6 +/- 4 versus 10.7 +/- 2 control; n = 6) and decreased relaxation to acetylcholine (47.6 +/- 6% versus 73.2 +/- 10% control; n = 8) versus arteries from uninephrectomized rats. O- GlcNAc protein content was increased in aortas from DOCA rats (arbitrary units = 3.8 +/- 0.3 versus 2.3 +/- 0.3 control; n = 5). PugNAc (O- GlcNAcase inhibitor; 100 mu mol/L; 24 hours) increased vascular O- GlcNAc proteins, augmented phenylephrine vascular reactivity (18.2 +/- 2 versus 10.7 +/- 3 vehicle; n = 6), and decreased acetylcholine dilation in uninephrectomized (41.4 +/- 6 versus 73.2 +/- 3 vehicle; n = 6) but not in DOCA rats (phenylephrine, 16.5 +/- 3 versus 18.6 +/- 3 vehicle, n = 6; acetylcholine, 44.7 +/- 8 versus 47.6 +/- 7 vehicle, n = 6). PugNAc did not change total vascular endothelial nitric oxide synthase levels, but reduced endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) phosphorylation (P < 0.05). Aortas from DOCA rats also exhibited decreased levels of endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) (P < 0.05) but no changes in total endothelial nitric oxide synthase or Akt. Vascular O-GlcNAc-modified endothelial nitric oxide synthase was increased in DOCA rats. Blood glucose was similar in DOCA and uninephrectomized rats. Expression of O- GlcNAc transferase, glutamine: fructose-6-phosphate amidotransferase, and O- GlcNAcase, enzymes that directly modulate O-GlcNAcylation, was decreased in arteries from DOCA rats (P < 0.05). This is the first study showing that O-GlcNAcylation modulates vascular reactivity in normoglycemic conditions and that vascular O- GlcNAc proteins are increased in DOCA-salt hypertension. Modulation of increased vascular O-GlcNAcylation may represent a novel therapeutic approach in mineralocorticoid hypertension. (Hypertension. 2009; 53: 166-174.)
Resumo:
We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.
Resumo:
Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.
Resumo:
The chemistry of Ru(III) complexes containing dmso as a ligand has become an interesting area in the cancer treatment field. Because of this, structural knowledge and chemistry of the moiety Ru(III)-dmso have become important to cancer research. The crystal structures of the compounds mer-[RuCl(3)(dms)(3)] (1) and mer-[RuCl(3)(dms)(2)(dmso)]:mer-[RuCl(3)(dms)(3)] (2) were determined by X-ray crystallography and a speciation of the presence of intramolecular hydrogen bond in these structures has been studied. Compound (1) crystallizes in the orthorhombic space group, Pna2(1); a = 16.591(8) angstrom, b = 8.724(2) angstrom. c = 10.547(3) angstrom; Z = 12 and (2) crystallizes in the space group, P2(1)/C: a = 11.9930(2) angstrom, b = 7.9390(2) angstrom, c = 15.8700(3) angstrom, beta = 93.266(1)degrees, Z = 2. From the X-ray structures solved in this work, were possible to suggest an interpretation for the broad lines observed in the EPR spectra of the Ru(III) compounds explored here. Also, the exchange interactions detected by EPR spectroscopy in solid state and in solution, confirm the presence of van der Waals interactions such as C-H center dot center dot center dot Cl in the compounds (1), (2) and (3). The use of techniques such as IR, UV-vis, (1)H NMR and EPR Spectroscopy and Cyclic Voltammetry were applied in this work to analyze the behavior of these metallocompounds. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Comparative molecular field analysis (CoMFA) studies were conducted on a series of 100 isoniazid derivatives as anti-tuberculosis agents using two receptor-independent structural data set alignment strategies: (1) rigid-body fit, and (2) pharmacophore-based. Significant cross-validated correlation coefficients were obtained (CoMFA(1), q(2) = 0,75 and CoMFA(2), q(2) = 0.74), indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 20 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results.
Resumo:
In the course of our research program to discover novel antileishmanial agents, a biological screening of natural products against Leishmania major promastigotes allowed the identification of a furoquinoline alkaloid (1) and a furanocoumarin (2) as new hits. Subsequently, an integrated ligand-based virtual screening approach was employed to search for new antileishmanial compounds using these naturally occurring molecules as templates. Fourteen out of 40 compounds selected from a database of about 800,000 compounds (extracted from ZINC, a free database for virtual screening) were experimentally confirmed to possess significant in vitro antileishmanial properties. The application of ligand-based virtual screening as a complementary approach to experimental natural product screening was a useful strategy to facilitate the identification of new promising lead candidates.
Resumo:
Worldwide, tuberculosis (TB) is the leading cause of death among curable infectious diseases. Multidrug-resistant Mycobacterium tuberculosis is an emerging problem of great importance to public health, and there is an urgent need for new anti-TB drugs. In the present work, classical 2D quantitative structure-activity relationships (QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 91 isoniazid derivatives. Significant statistical models (classical QSAR, q(2) = 0.68 and r(2) = 0.72; HQSAR, q(2) = 0.63 and r(2) = 0.86) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 24 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, r(pred)(2) = 0.87; classical QSAR, r(pred)(2) = 0.75).
Resumo:
We introduce a stochastic heterogeneous interacting-agent model for the short-time non-equilibrium evolution of excess demand and price in a stylized asset market. We consider a combination of social interaction within peer groups and individually heterogeneous fundamentalist trading decisions which take into account the market price and the perceived fundamental value of the asset. The resulting excess demand is coupled to the market price. Rigorous analysis reveals that this feedback may lead to price oscillations, a single bounce, or monotonic price behaviour. The model is a rare example of an analytically tractable interacting-agent model which allows LIS to deduce in detail the origin of these different collective patterns. For a natural choice of initial distribution, the results are independent of the graph structure that models the peer network of agents whose decisions influence each other. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chagas disease is nowadays the most serious parasitic health problem. This disease is caused by Trypanosoma cruzi. The great number of deaths and the insufficient effectiveness of drugs against this parasite have alarmed the scientific community worldwide. In an attempt to overcome this problem, a model for the design and prediction of new antitrypanosomal agents was obtained. This used a mixed approach, containing simple descriptors based on fragments and topological substructural molecular design descriptors. A data set was made up of 188 compounds, 99 of them characterized an antitrypanosomal activity and 88 compounds that belong to other pharmaceutical categories. The model showed sensitivity, specificity and accuracy values above 85%. Quantitative fragmental contributions were also calculated. Then, and to confirm the quality of the model, 15 structures of molecules tested as antitrypanosomal compounds (that we did not include in this study) were predicted, taking into account the information on the abovementioned calculated fragmental contributions. The model showed an accuracy of 100% which means that the ""in silico"" methodology developed by our team is promising for the rational design of new antitrypanosomal drugs. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 882-894. 2010
Resumo:
The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3 ``-methylbut-2 ``-enyl)-2-(4`-methylpent-3`-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC50 of 2.82 mu M. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease.
Resumo:
Phytochemical investigation of the bark of Guatteria hispida afforded three new alkaloids, 9-methoxy-O-methylmoschatoline (1), 9-methoxyisomoschatoline (2), and isocerasonine (3), along with 10 known alkaloids, 8-oxopseudopalmatine (4), O-methylmoschatoline (5), lysicamine (6), liriodenine (7), 10-methoxyliriodenine (8), nornuciferine (9), anonaine (10), xylopine (11), coreximine (12), and isocoreximine (13). The major compounds, 2, 6, 12, and 13, showed significant antioxidant capacity in the ORAC(FL), assay. Compounds 5, 6, and 7 were active against S. epidermidis and C. dubliniensis, with MIC values in the range 12.5-100 mu g mL(-1).