94 resultados para THIOL MONOLAYERS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiol-functionalised silica films were deposited on various electrode surfaces (gold, platinum, glassy carbon) by spin-coating sol-gel mixtures in the presence of a surfactant template. Film formation occurred by evaporation induced self-assembly (EISA) involving the hydrolysis and (co)condensation of silane and organosilane precursors on the electrode surface. The characterization of such material was performed by IR spectroscopy, thermogravimetry (TG), elemental analysis (EA), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bidirectional transport studies were conducted using Caco-2, MDCK, and MDCK-MDR1 to determine P-gp influences in lamivudine and zidovudine permeability and evaluate if zidovudine permeability changes with the increase of zidovudine concentration and/or by association of lamivudine. Transport of lamivudine and zidovudine separated and coadministrated across monolayers based on these cells were quantified using LC-MS-MS. Drug efflux by P-gp was inhibited using GG918. Bidirectional transport of lamivudine and zidovudine was performed across MDCK-MDR1 and Caco-2 cells. Statistically significant transport decrease in B -> A direction was observed using MDCK-MDR1 for zidovudine and MDCK-MDR1 and Caco-2 for lamivudine. Results show increased transport in B -> A and A -> B directions as concentration increases but data from P(app) increase in both directions for both drugs in Caco-2, decrease in MDCK, and does not change significantly in MDCK-MDR1. Zidovudine transport in A -> B direction increases when coadministrated with increasing lamivudine concentration but does not change significantly in B -> A direction. Zidovudine and lamivudine are P-gp substrates, but results assume that P-gp does not affect significantly lamivudine and zidovudine. Their transport in monolayers based on Caco-2 cells increase proportionally to concentration (in both directions) and zidovudine transport in Caco-2 cell monolayer does not show significant changes with lamivudine increasing concentrations. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4413-4419, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenothiazines (PTZ) are drugs widely used in the treatment of schizophrenia. Trifluoperazine, a piperazinic PTZ derivative, has been described as inhibitor of the mitochondrial permeability transition (MPT). We reported previously the antioxidant activity of thioridazine at relatively low concentrations associated to the inhibition of the MPT (Brit. J. Pharmacol., 2002;136:136-142). In this study, it was investigated the induction of MPT by PTZ derivatives at concentrations higher than 10 mu M focusing on the molecular mechanism involved. PTZ promoted a dose-response mitochondrial swelling accompanied by mitochondrial transmembrane potential dissipation and calcium release, being thioridazine the most potent derivative. PTZ-induced MPT was partially inhibited by CsA or Mg(2+) and completely abolished by the abstraction of calcium. The oxidation of reduced thiol group of mitochondrial membrane proteins by PTZ was upstream the VIP opening and it was not sufficient to promote the opening of PTP that only occurred when calcium was present in the mitochondrial matrix. EPR experiments using DMPO as spin trapping excluded the participation of reactive oxygen species on the PTZ-induced MPT. Since 117 give rise to cation radicals chemically by the action of peroxidases and cyanide inhibited the PTZ-induced swelling, we propose that VIZ bury in the inner mitochondrial membrane and the chemically generated 117 cation radicals modify specific thiol groups that in the presence of Ca(2+) result in MPT associated to cytochrome c release. These findings contribute for the understanding of mechanisms of MET induction and may have implications for the cell death induced by PTZ. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate from first principles the electronic and transport properties of hybrid organic/silicon interfaces of relevance to molecular electronics. We focus on conjugated molecules bonded to hydrogenated Si through hydroxyl or thiol groups. The electronic structure of the systems is addressed within density functional theory, and the electron transport across the interface is directly evaluated within the Landauer approach. The microscopic effects of molecule-substrate bonding on the transport efficiency are explicitly analyzed, and the oxygen-bonded interface is identified as a candidate system when preferential hole transfer is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polysaccharide chitosan has been largely used in many biological applications as a fat and cholesterol reducer, bactericide agent, and wound healing material. While the efficacy for some of such uses is proven, little is known about the molecular-level interactions involved in these applications. In this study, we employ mixed Langmuir and Langmuir-Blodgett (LB) films of negatively charged dimyristoyl phosphatidic acid (DMPA) anti cholesterol as cell membrane models to investigate the role of cholesterol in the molecular-level action of chitosan. Chitosan does not remove cholesterol froth the monolayer. The interaction with chitosan tends to expand the DMPA monolayer due to its interpenetration within the film. On the other hand, cholesterol induces condensation of the DMPA monolayer. The competing effects cause the surface pressure isotherms of mixed DMPA-cholesterol films on a chitosan subphase to be unaffected by the cholesterol mole fraction, due to distinct degrees of chitosan penetration into the film in the presence of cholesterol. By combining polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), we showed that chitosan induces order into negatively charged phospholipid layers, whereas the opposite occurs for cholesterol. In conclusion, chitosan has its penetration in the film modulated by cholesterol, and electrostatic interactions with negatively charged phospholipids, such as DMPA, are crucial for the action of chitosan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method employed to incorporate guest molecules onto phospholipid Langmuir monolayers plays an important role in the interaction between the monolayer and the guest molecules. In this paper, we show that for the interaction between horseradish peroxidase (HRP) and a monolayer of dipalmitoylphosphatidylglycerol (DPPG) does depend on the method of HRP incorporation. The surface pressure isotherms of the mixed DPPG/HRP monolayers, for instance, were less expanded when the two materials were co-spread than in the case where HRP was injected into the subphase. Therefore, the method for incorporation affected not only the penetration of HRP but also the changes in molecular packing caused to the DPPG monolayer. With experiments with the monolayer on a pendant drop, we observed that the incorporation of HRP affects the dynamic elasticity of the DPPG monolayer, on a way that varies with the surface pressure. At low pressures, HRP causes the monolayer to be more rigid, while the converse is true for surface pressures above 8 mN/m. Taken all the results together, we conclude that HRP is more efficiently incorporated if injected into the subphase on which a DPPG monolayer had been spread and that the interaction between HRP and DPPG is maintained even at high surface pressures. This is promising for the possible transfer of mixed films onto solid substrates and for applications in biosensors and drug delivery systems. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2`-palmitoyluridin und 3`-palmitoyluridin, forms Langmuir monolayers and Langmuir-Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV-vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liponucleosides may assist the anchoring of nucleic acid nitrogen bases into biological membranes for tailored nanobiotechnological applications. To this end precise knowledge about the biophysical and chemical details at the membrane surface is required. In this paper, we used Langmuir monolayers as simplified cell membrane models and studied the insertion of five lipidated nucleosides. These molecules varied in the type of the covalently attached lipid group, the nucleobase, and the number of hydrophobic moieties attached to the nucleoside. All five lipidated nucleosides were found to be surface-active and capable of forming stable monolayers. They could also be incorporated into dipalmitoylphosphatidylcholine (DPPC) monolayers, four of which induced expansion in the surface pressure isotherm and a decrease in the surface compression modulus of DPPC. In contrast, one nucleoside possessing three alkyl chain modifications formed very condensed monolayers and induced film condensation and an increase in the compression modulus for the DPPC monolayer, thus reflecting the importance of the ability of the nucleoside molecules to be arranged in a closely packed manner. The implications of these results lie on the possibility of tuning nucleic acid pairing by modifying structural characteristics of the liponucleosides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt monolayers deposited on carbon- supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt-Ru and Pt-Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical characteristics of the AA2024 aluminium alloy modified with octadecyltrimethoxysilane (ODTMS) + polyaniline (PANi) and propiltrimethoxysilane (PTMS) + (PANi) were studied in the present work. The results show that the different protective coatings shift the values of corrosion and pit potentials to more positive values making the system nobler and indicate that the double film ODTMS + PANi present the best protection against corrosion characteristics, that is probably due to the two contributions: anodic protection associated with the barrier effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we use resonant x-ray diffraction combined with polarization analysis of the diffracted beam to study the magnetic ordering in EuTe/PbTe multilayers. The presence of satellites at the (1/2 1/2 1/2) magnetic reflection of a 50 /repetition EuTe/PbTe superlattice demonstrated the existence of magnetic correlations among the alternated EuTe layers. The behavior of the satellites intensity as T increases toward the Neel temperature T(N) indicates that these correlations persist nearly up to T(N) and suggests the preferential decrease of the magnetic order parameter of external monolayers of each EuTe layer within the superlattice. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.