89 resultados para Synthetic traffic generation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.
Resumo:
Samples of 15 second generation soy-based products (n = 3), commercially available, were analyzed for their protein and isoflavone contents and in vitro antioxidant activity, by means of the Folin-Ciocalteu reducing ability, DPPH radical scavenging capacity, and oxygen radical absorbance capacity. Isoflavone identification and quantification were performed by high-performance liquid chromatography. Products containing soy and/or soy-based ingredients represent important sources of protein in addition to the low fat amounts. However, a large variation in isoflavone content and in vitro antioxidant capacity was observed. The isoflavone content varied from 2.4 to 18.1 mg/100 g (FW), and soy kibe and soy sausage presented the highest amounts. Chocolate had the highest antioxidant capacity, but this fact was probably associated with the addition of cocoa liquor, a well-known source of polyphenolics. This study showed that the soy-based foods do not present a significant content of isoflavones when compared with the grain, and their in vitro antioxidant capacity is not related with these compounds but rather to the presence of other phenolics and synthetic antioxidants, such as sodium erythorbate. However, they may represent alternative sources and provide soy protein, isoflavones, and vegetable fat for those who are not ready to eat traditional soy foods.
Resumo:
Hydroalumination of thioacetylenes using DIBAL-H and lithium di-(isobutyl)-n-(butyl)-aluminate hydride (Zweifel`s reagent), followed by addition of water, furnished exclusively the (Z)- and (E)-vinyl sulfides, respectively. The regio- and stereochemistry of the intermediates generated, (Z)- and (E)-phenylthio vinyl alanates, were determined by capture with iodine, which afforded the corresponding (E)- and (Z)-1-iodo-1-phenylthio-2-organoyl ethenes. Reactions of the (E)-iodo(thio)ketene acetals with n-BuLi followed by addition of hexanal afforded the (Z)-phenylthio allylic alcohol, while the (Z)-iodo(thio)ketene acetals under similar reactions conditions gave the (E)-phenylthio allylic alcohol exclusively.
Resumo:
Background: Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results: An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1`. Conclusions: BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.
Resumo:
n-Butanethiol is generated in situ by sequential addition of n-butyllithium and water to elemental sulfur. The n-butanethiol formed was reacted with electron-deficient olefines to give Michael-type addition products in good yields. The method avoids the manipulation of the bad-smelling n-butanethiol.
Resumo:
The transmetalation between boron and zinc is of great importance for application in organic synthesis, since it allows the formation of new carbon-carbon bonds between organometallic units and electrophiles. The direct arylation of aldehydes or more scarcely ketones, in a catalytic, enantioselective manner using chiral catalysts has been described recently. The enantiomerically enriched diarylmethanols obtained in these reactions are valuable precursors for important bioactive molecules. This review provides a synopsis of this ever-growing field and highlights some of the challenges that still remain.
Resumo:
The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.
Resumo:
BACKGROUND: Ambient levels of air pollution may affect the health of children, as indicated by studies of infant and perinatal mortality. Scientific evidence has also correlated low birth weight and preterm birth, which are important determinants of perinatal death, with air pollution. However, most of these studies used ambient concentrations measured at monitoring sites, which may not consider differential exposure to pollutants found at elevated concentrations near heavy-traffic roadways. OBJECTIVES: Our goal was to examine the association between traffic-related pollution and perinatal mortality. METHODS: We used the information collected for a case-control study conducted in 14 districts in the City of Sao Paulo, Brazil, regarding risk factors for perinatal deaths. We geocoded the residential addresses of cases (fetal and early neonatal deaths) and controls (children who survived the 28th day of life) and calculated a distance-weighted traffic density (DWTD) measure considering all roads contained in a buffer surrounding these homes. RESULTS: Logistic regression revealed a gradient of increasing risk of early neonatal death with higher exposure to traffic-related air pollution. Mothers exposed to the highest quartile of the DWTD compared with those less exposed exhibited approximately 50% increased risk (adjusted odds ratio = 1.47; 95% confidence interval, 0.67-3.19). Associations for fetal mortality were less consistent. CONCLUSIONS: These results suggest that motor vehicle exhaust exposures may be a risk factor for perinatal mortality.
Resumo:
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
Plasmodium species are the causative agents of malaria, the most devastating insect-borne parasite of human populations. Finding and developing new drugs for malaria treatment and prevention is the goal of much research. Angiotensins I and II (ang I and ang II) and six synthetic related peptides designated Vaniceres 1-6 (VC1-VC6) were assayed in vivo and in vitro for their effects on the development of the avian parasite, Plasmodium gallinaceum. Ang II and VC5 injected into the thoraces of the insects reduced mean intensities of infection in the mosquito salivary glands by 88% and 76%, respectively. Although the mechanism(s) of action is not completely understood, we have demonstrated that these peptides disrupt selectively the P. gallinaceum cell membrane. Additionally, incubation in vitro of sporozoites with VC5 reduced the infectivity of the parasites to their vertebrate host. VC5 has no observable agonist effects on vertebrates, and this makes it a promising drug for malaria prevention and chemotherapy.
Resumo:
In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.
Resumo:
We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.
Resumo:
The magnetic europium chalcogenide semiconductors EuTe and EuSe are investigated by the spectroscopy of second harmonic generation (SHG) in the vicinity of the optical band gap formed by transitions involving the 4f and 5d electronic orbitals of the magnetic Eu(2+) ions. In these materials with centrosymmetric crystal lattice the electric-dipole SHG process is symmetry forbidden so that no signal is observed in zero magnetic field. Signal appears, however, in applied magnetic field with the SHG intensity being proportional to the square of magnetization. The magnetic field and temperature dependencies of the induced SHG allow us to introduce a type of nonlinear optical susceptibility determined by the magnetic-dipole contribution in combination with a spontaneous or induced magnetization. The experimental results can be described qualitatively by a phenomenological model based on a symmetry analysis and are in good quantitative agreement with microscopic model calculations accounting for details of the electronic energy and spin structure.
Resumo:
Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.