Strongly coupled fourth generation at the LHC
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
18/04/2012
18/04/2012
2009
|
Resumo |
We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) |
Identificador |
PHYSICAL REVIEW D, v.79, n.7, 2009 1550-7998 http://producao.usp.br/handle/BDPI/16157 10.1103/PhysRevD.79.075026 |
Idioma(s) |
eng |
Publicador |
AMER PHYSICAL SOC |
Relação |
Physical Review D |
Direitos |
restrictedAccess Copyright AMER PHYSICAL SOC |
Palavras-Chave | #PHYSICS EVENT GENERATION #SYMMETRY #MODEL #Astronomy & Astrophysics #Physics, Particles & Fields |
Tipo |
article original article publishedVersion |