3 resultados para Symplectic blow up
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In 1983, Chvatal, Trotter and the two senior authors proved that for any Delta there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph K(N) with N >= Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Delta. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and O(N(2-1/Delta)log(1/Delta)N) edges, with N = [B`n] for some constant B` that depends only on Delta. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Delta is O(n(2-1/Delta)log(1/Delta)n) Our approach is based on random graphs; in fact, we show that the classical Erdos-Renyi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Delta. The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}.
Resumo:
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems.