210 resultados para Stress testing

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to compare the polymerization stress (sigma(pol)) of a series of composites obtained using poly(methyl methacrylate) (PMMA) or glass as bonding substrates, and to compare the results with those from in vitro microleakage of composite restorations. The tested hypothesis was that stress values obtained in a less rigid testing system (i.e. using PMMA) would show a better relationship with microleakage data. Five dental composites were tested: Filtek Z250 (FZ), Z100 (Z1), Concept (CO), Durafill (DU) and Heliomolar (HM). sigma(pol) was determined in 1 mm high specimens inserted between two rods (empty set = 5 mm) of either PMMA or glass. The composite elastic modulus (E) was obtained by three-point bending. sigma(pol) and E data were submitted to a one-way analysis of variance/Tukey test (alpha = 0.05). For the microleakage test (MI), bovine incisors received cylindrical cavities (empty set = 5 mm, h = 2 mm), which were restored in bulk. After storage for 24 h in water, specimens were subjected to dye penetration using AgNO(3) as tracer. Specimens were sectioned twice, perpendicularly, and microleakage was measured (in millimeters) under 20x magnification. Data from MI were submitted to the Kruskal-Wallis test. Means (SD) of sigma(pol) (MPa) using glass/PMMA were FZ: 7.5(1.8)(A)/2.5(0.2)(bc); Z1: 7.3(0.5)(A)/2.8(0.3)(ab); CO: 6.8(1.1)(A)/3.2(0.5)(a); DU: 4.5(0.7)(B)/2.0(0.2)(bc); HM: 3.5(0.2)(B)/2.3(0.3)(c). sigma(pol) obtained using PMMA rods were 34-67% lower than with glass. Means (SD) for tooth average/tooth maximum microleakage were FZ: 0.92(0.19)(B)/1.53(0.30)(a); Z1: 1.19(0.21)(A)/1.75(0.20)(a); CO: 1.26(0.25)(A)/1.78(0.24)(a); DU: 0.83(0.30)(B)/1.68(0.46)(a): HM: 0.81(0.27)(B)/1.64(0.54)(a). The tested hypothesis was confirmed, as the composites showed the same ordering both in the polymerization stress test using PMMA rods and in the microleakage test. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many therapeutic agents are commercialized under their racemic form. The enantiomers can show differences in the pharmacokinetic and pharmacodynamic profile. The use of a pure enantiomer in pharmaceutical formulations may result in a better therapeutic index and fewer adverse effects. Atropine, an alkaloid of Atropa belladonna, is a racemic mixture of l-hyoscyamine and d-hyoscyamine. It is widely used to dilate the pupil. To quantify these enantiomers in ophthalmic solutions, an HPLC method was developed and validated using a Chiral AGP (R) column at 20 degrees C. The mobile phase consisted of a buffered phosphate solution (containing 10 mM 1-octanesulfonic acid sodium salt and 7.5 mM triethylamine, adjusted to pH 7.0 with orthophosphoric acid) and acetonitrile (99 + 1, v/v). The flow rate was 0.6 mL/min, with UV detection at 205 nm. In the concentration range of 14.0-26.0 mu g/mL, the method was found to be linear (r > 0.9999), accurate (with recovery of 100.1-100.5%), and precise (RSD system: <= 0.6%; RSD intraday: <= 1.1%; RSD interday: <= 0.9%). The method was specific, and the standard and sample solutions were stable for up to 72 h. The factorial design assures robustness with a variation of +/-10% in the mobile phase components and 2 degrees C of column temperature. The complete validation, including stress testing and factorial design, was studied and is presented in this research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple and rapid development of a stability-indicating LC method for determination of chloroquine diphosphate in the presence of its hydrolysis, oxidative and photolysis degradation products is described. Stress testing showed that chloroquine diphosphate was degraded under basic conditions and by photolytic treatment but was stable under the other stress conditions investigated. Separation of the drug from its degradation products was achieved with a Nova Pack C18 column, 0.01 M PIC B7 and acetonitrile (40:60 v/v) pH 3.6, as mobile phase. Response was linear over the range 0.08-5.70 mu g mL(-1) (r = 0.996), with limits of detection and quantification (LOD and LOQ) of 0.17 and 0.35 mu g mL(-1), respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background We validated a strategy for diagnosis of coronary artery disease ( CAD) and prediction of cardiac events in high-risk renal transplant candidates ( at least one of the following: age >= 50 years, diabetes, cardiovascular disease). Methods A diagnosis and risk assessment strategy was used in 228 renal transplant candidates to validate an algorithm. Patients underwent dipyridamole myocardial stress testing and coronary angiography and were followed up until death, renal transplantation, or cardiac events. Results The prevalence of CAD was 47%. Stress testing did not detect significant CAD in 1/3 of patients. The sensitivity, specificity, and positive and negative predictive values of the stress test for detecting CAD were 70, 74, 69, and 71%, respectively. CAD, defined by angiography, was associated with increased probability of cardiac events [log-rank: 0.001; hazard ratio: 1.90, 95% confidence interval (CI): 1.29-2.92]. Diabetes (P=0.03; hazard ratio: 1.58, 95% CI: 1.06-2.45) and angiographically defined CAD (P=0.03; hazard ratio: 1.69, 95% CI: 1.08-2.78) were the independent predictors of events. Conclusion The results validate our observations in a smaller number of high-risk transplant candidates and indicate that stress testing is not appropriate for the diagnosis of CAD or prediction of cardiac events in this group of patients. Coronary angiography was correlated with events but, because less than 50% of patients had significant disease, it seems premature to recommend the test to all high-risk renal transplant candidates. The results suggest that angiography is necessary in many high-risk renal transplant candidates and that better noninvasive methods are still lacking to identify with precision patients who will benefit from invasive procedures. Coron Artery Dis 21: 164-167 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STUDY DESIGN: Controlled laboratory study. OBJECTIVE: To evaluate the effect of low-intensity therapeutic ultrasound on the murine calcaneus tendon healing process. BACKGROUND: Therapeutic ultrasound promotes formation and maturation of scar tissue. METHODS: Calcaneus tendon tenotomy and tenorrhaphy was performed on 28 Wistar rats. After the procedure, the animals were randomly divided into 2 groups. The animals in the experimental group received a 5-minute ultrasound application, once a day, at a frequency of 1 MHz, a spatial average temporal average intensity of 0.1 W/cm(2), and a spatial average intensity of 0.52 W/cm(2) at a 16-Hz frequency pulse mode (duty cycle, 20%). Data for the injured side were normalized in relation to the data from the contralateral healthy calcaneus tendon (relative values). The animals in the control group received sham treatment. After a 28-day treatment period, the animals were sacrificed and their tendons surgically removed and subjected to mechanical stress testing. The parameters analyzed were cross-sectional area (mm(2)), ultimate load (N), tensile strength (MPa), and energy absorption (mJ). RESULTS: A significant difference between groups was found for the relative values of ultimate load and tensile strength. The mean +/- SD ultimate load of the control group was -3.5% +/- 32.2% compared to 33.3% +/- 26.8% for the experimental group (P = .005). The mean tensile strength of the control group was -47.7% +/- 19.5% compared to -28.1% +/- 24.1% for the experimental group (P = .019). No significant difference was found in cross-sectional area and energy absorption. CONCLUSION: Low-intensity pulsed ultrasound produced by a conventional therapeutic ultrasound unit can positively influence the calcaneus tendon healing process in rats. J Ort hop Sports Phys Ther 2011;41(7):526-531, Epub 2 February 2011. doi:10.2519/jospt.2011.3468

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to test the hypothesis of differences in performance including differences in ST-T wave changes between healthy men and women submitted to an exercise stress test. Two hundred (45.4%) men and 241 (54.6%) women (mean age: 38.7 ± 11.0 years) were submitted to an exercise stress test. Physiologic and electrocardiographic variables were compared by the Student t-test and the chi-square test. To test the hypothesis of differences in ST-segment changes, data were ranked with functional models based on weighted least squares. To evaluate the influence of gender and age on the diagnosis of ST-segment abnormality, a logistic model was adjusted; P < 0.05 was considered to be significant. Rate-pressure product, duration of exercise and estimated functional capacity were higher in men (P < 0.05). Sixteen (6.7%) women and 9 (4.5%) men demonstrated ST-segment upslope ≥0.15 mV or downslope ≥0.10 mV; the difference was not statistically significant. Age increase of one year added 4% to the chance of upsloping of segment ST ≥0.15 mV or downsloping of segment ST ≥0.1 mV (P = 0.03; risk ratio = 1.040, 95% confidence interval (CI) = 1.002-1.080). Heart rate recovery was higher in women (P < 0.05). The chance of women showing an increase of systolic blood pressure ≤30 mmHg was 85% higher (P = 0.01; risk ratio = 1.85, 95%CI = 1.1-3.05). No significant difference in the frequency of ST-T wave changes was observed between men and women. Other differences may be related to different physical conditioning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material`s strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, an axisymmetric two-dimensional finite element model was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. The level of film residual stress (sigma(r)), the film elastic modulus (E) and the film work hardening exponent (n) were varied to analyze their effects on indentation data. These numerical results were used to analyze experimental data that were obtained with titanium nitride coated specimens, in which the substrate bias applied during deposition was modified to obtain films with different levels of sigma(r). Good qualitative correlation was obtained when numerical and experimental results were compared, as long as all film properties are considered in the analyses, and not only sigma(r). The numerical analyses were also used to further understand the effect of sigma(r) on the mechanical properties calculated based on instrumented indentation data. In this case, the hardness values obtained based on real or calculated contact areas are similar only when sink-in occurs, i.e. with high n or high ratio VIE, where Y is the yield strength of the film. In an additional analysis, four ratios (R/h(max)) between indenter tip radius and maximum penetration depth were simulated to analyze the combined effects of R and sigma(r) on the indentation load-displacement curves. In this case, or did not significantly affect the load curve exponent, which was affected only by the indenter tip radius. On the other hand, the proportional curvature coefficient was significantly affected by sigma(r) and n. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the effects of photodegradation on the environmental stress cracking resistance of polycarbonate (PC). Injection molded samples were exposed to the ultraviolet (UV) light for various times in the laboratory prior to solvent contact. The bars were then stressed with two different loads in a tensile testing machine under the presence of ethanol. During this period, the stress relaxation was monitored and, after unloading, the ultimate properties were evaluated. Complementary tests were done by size exclusion chromatography, UV-visible spectroscopy, scanning electron microscopy, and light microscopy. The results indicated that ethanol causes significant modification in PC, with extensive surface crazing as well as reduction in mechanical properties. The previous degraded samples showed a higher level of stress relaxation and a greater loss in tensile strength in comparison with the undegraded ones. The synergist action of photodegradation and stress cracking in PC may be a consequence of the chemical changes caused by oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to perform a stability testing of spray- and spouted bed-dried extracts of Passiflora alata Dryander (Passion flower) under stress storage conditions. Spouted bed- and spray-dried extracts were characterized by determination of the average particle diameter (dP), apparent moisture content (XP), total flavonoid content (TF), and vitexin content. Smaller and more irregular particles were generated by the spouted bed system due to a higher attrition rate (surface erosion) inside the dryer. The SB dryer resulted in an end product with higher concentration of flavonoids (approximate to 10%) and lower moisture content (1.6%, dry basis) than the spray dryer, even with both dryers working at similar inlet drying air temperature and ratio between the extract feed flow rate to drying air flow rate (Ws/Wg). Samples of the spouted bed- and spray-dried extracts were stored at two different temperatures (34 and 45 degrees C) and two different relative humidities (52 and 63% RH for 34 degrees C; 52 and 60% RH for 45 degrees C) in order to perform the stability testing. The dried extracts were stored for 28 days and were analyzed every 4 days. The flavonoid vitexin served as the marker compound, which was assayed during the storage period. Results revealed shelf lives ranging from 9 to 184 days, depending on the drying process and storage conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature shows contradictory results regarding the role of composite shrinkage and elastic modulus as determinants of polymerization stress. The present study aimed at a better understanding of the test mechanics that could explain such divergences among studies. The hypothesis was that the effects of composite shrinkage and elastic modulus on stress depend upon the compliance of the testing system. A commonly used test apparatus was simulated by finite element analysis, with different compliance levels defined by the bonding substrate (steel, glass, composite, or acrylic). Composites with moduli between 1 and 12 GPa and shrinkage values between 0.5% and 6% were modeled. Shrinkage was simulated by thermal analogy. The hypothesis was confirmed. When shrinkage and modulus increased simultaneously, stress increased regardless of the substrate. However, if shrinkage and modulus were inversely related, their magnitudes and interaction with rod material determined the stress response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To compare currently available low-shrinkage composites with others regarding polymerization stress, volumetric shrinkage (total and post-gel), shrinkage rate and elastic modulus. Methods. Seven BisGMA-based composites (Durafill/DU, Filtek Z250/FZ, Heliomolar/HM, Aelite LS Posterior/AP, Point 4/P4, Filtek Supreme/SU, ELS/EL), a silorane-based (Filtek LS, LS), a urethane-based (Venus Diamond, VD) and one based on a dimethacrylate-derivative of dimer acid (N`Durance, ND) were tested. Polymerization stress was determined in 1-mm high specimens inserted between two PMMA rods attached to a universal testing machine. Total volumetric shrinkage was measured using a mercury dilatometer. Maximum shrinkage rate was used as a parameter of the reaction speed. Post-gel shrinkage was measured using strain-gages. Elastic modulus was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey test (p = 0.05), except for elastic modulus (Kruskal-Wallis). Results. Composites ranked differently for total and post-gel shrinkage. Among the materials considered as ""low-shrinkage"" by the respective manufacturers, LS, EL and VD presented low post-gel shrinkage, while AP and ND presented relatively high values. Polymerization stress showed a strong correlation with post-gel shrinkage except for LS, which presented high stress. Elastic modulus and shrinkage rate showed weak relationships with polymerization stress. Significance. Not all low-shrinkage composites demonstrated reduced polymerization shrinkage. Also, in order to effectively reduce polymerization stress, a low post-gel shrinkage must be associated to a relatively low elastic modulus. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. Stress development at the tooth/restoration interface is one of the most important reasons for failure of adhesive restorations. The aim of this study was to evaluate the influence of BisGMA/TEGDMA (B/T) and UDMA/TEGDMA (U/T) ratios on polymerization stress (PS) and on the variables related to its development: degree of conversion (DC), polymerization maximum rate (Rp(max)), volumetric shrinkage (VS), elastic modulus (E), stress relaxation (SR) and viscosity of experimental composites. Method. Composites were formulated containing B/T or U/T in mol% ratios of 2: 8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3 and 8: 2, and 15 wt% of fumed silica. PS was determined with a universal testing machine. VS was measured with a linometer. E and SR were obtained in three-point bending. DC and Rp(max) were determined by real time NIR spectroscopy and viscosity was measured in viscometer. Data were submitted to one-way ANOVA, Tukey test (alpha = 0.05%) and regression analyses. Results. PS, VS, E and DC decreased and viscosity and Rp(max) increased with base monomer content in both series. PS showed strong correlation with VS, DC and viscosity. PS, VS and DC were higher and viscosity was lower for UDMA-based materials. Significance. Reduced viscosity, kinetics parameters and molecular characteristics led UDMA-based composites to elevated conversion and relatively lower PS at lower TEGDMA contents, compared to B/T composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. This study evaluated the degree of conversion (DC), maximum rate of cure (R(p)(max)), and polymerization stress (PS) developed by an experimental dental composite subjected to different irradiant energies (3,6,12, 24, or 48J/cm(2)) under constant irradiance (500 mw/cm(2)). Methods. DC and R(p)(max) were monitored for 10 min on the bottom surface of 2-mm thick disks and on 150-mu m thick films (representing the top of the specimen) using ATR-FTIR. PS was monitored for 10 min in 2-mm thick disks bonded to two glass rods (O = 5 mm) attached to a universal testing machine. One-way ANOVA/Tukey tests were used and differences in DC and R(p)(max) between top and bottom surfaces were examined using Student`s t-test. Statistical testing was performed at a pre-set alpha of 0.05. Results. For a given surface, DC showed differences among all groups, except at the top between 24 and 48 J/cm(2). R(p)(max) was similar among all groups at the same surface and statistically higher at the top surface. PS also showed significant differences among all groups. Data for 48 J/cm(2) were not obtained due to specimen failure at the glass/composite interface. Significance. Increases in irradiant exposure led to significant increases in DC and PS, but had no effect on R(p)(max) (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.