18 resultados para Starch gel electrophoresis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.
Resumo:
The present study concentrates on the evaluation of the anti-glycation effect of some bioactive substances present in yerba mate (Ilex paraguariensis): 5-caffeoylquinic acid, caffeic acid and a sapogenin (oleanolic acid). Bovine serum albumin and histones were incubated in the presence of methylglyoxal with or without the addition of 5-caffeoylquinic acid, caffeic acid and oleanolic acid. After the incubation period, advanced glycation end product (AGE) fluorescence spectra were performed and protein structural changes were evaluated by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. Chlorogenic acid, caffeic acid are the main substances responsible for the anti-glycation effect of mate tea. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Acyl-CoA binding protein (ACBP) is a housekeeping protein and is an essential protein in human cell lines and in Trypanosoma brucei. The ACBP of Moniliophthora perniciosa is composed of 104 amino acids and is possibly a non-classic isoform exclusively from Basidiomycetes. The M. perniciosa acbp gene was cloned, and the protein was expressed and purified. Acyl-CoA ester binding was analyzed by isoelectric focusing, native gel electrophoresis and isothermal titration calorimetry. Our results suggest an increasing affinity of ACBP for longer acyl-CoA esters, such as myristoyl-CoA to arachidoyl-CoA, and best fit modeling indicates two binding sites. ACBP undergoes a shift from a monomeric to a dimeric state, as shown by dynamic light scattering, fluorescence anisotropy and native gel electrophoresis in the absence and presence of the ligand. The protein`s structure was determined at 1.6 angstrom resolution and revealed a new topology for ACBP, containing five a-helices instead of four. alpha-helices 1, 2, 3 and 4 adopted a bundled arrangement that is unique from the previously determined four-helix folds of ACBP, while alpha-helices 1, 2, 4 and 5 formed a classical four-helix bundle. A MES molecule was found in the CoA binding site, suggesting that the CoA site could be a target for small compound screening. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The gelatin prepared from the skins of the Atlantic halibut (Hippoglossus hippoglossus) was investigated for the development of edible films plasticized with 30g sorbitol/100g gelatin. Two types of dry gelatin preparations were obtained depending on whether an intermediate evaporation step at 60 degrees C in the drying procedure is included or not. The amino acid composition, molecular weight distribution (determined by SDS-polyacrylamide gel electrophoresis) and glass transition temperature (determined by differential scanning calorimetry) of the gelatins were determined and related to some physical properties of the resulting films. The gelatin extracted from the halibut skins showed a suitable filmogenic capacity, leading to transparent, weakly colored, water-soluble and highly extensible films. The intermediate evaporation step at 60 degrees C induced thermal protein degradation, causing the resulting films to be significantly less resistant and more extensible. No differences in water vapor permeability, viscoelasticity, glass transition or color properties were evidenced between the two gelatins tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Araucaria angustifolia is an endangered Brazilian native conifer tree. The aim of the present work was to identify differentially expressed proteins between mature and germinated embryos of A. angustifolia, using one and two dimensional gel electrophoresis approaches followed by protein identification by tandem mass spectrometry. The identities of 32 differentially expressed protein spots from two dimensional gel maps were successfully determined, including proteins and enzymes involved in storage mobilization such as the vicilin-like storage protein and proteases. A label free approach, based on spectral counts, resulted in detection of 10 and 14 mature and germinated enriched proteins, respectively. Identified proteins were mainly related to energetic metabolism pathways, translational processes. oxidative stress regulation and cellular signaling. The integrated use of both strategies permitted a comprehensive protein expression overview of changes in germinated embryos in relation to matures, providing insights into the this process in a recalcitrant seed species. Applications of the data generated on the monitoring and control of in vitro somatic embryos were discussed. Published by Elsevier Ltd.
Resumo:
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org
Resumo:
Identification of all important community members as well as of the numerically dominant members of a community are key aspects of microbial community analysis of bioreactor samples. A systematic study was conducted with artificial consortia to test whether denaturing gradient gel electrophoresis (DGCE) is a reliable technique to obtain such community data under conditions where results would not be affected by differences in DNA extraction efficiency from cells. A total of 27 consortia were established by mixing DNA extracted from Escherichia coli K12, Burkholderia cepacia and Stenotrophomonas maltophilia in different proportions. Concentrations of DNA of single organisms in the consortia were either 0.04, 0.4 or 4 ng/mu l. DGGE-PCR of genomic DNA with primer sets targeted at the V3 and V6-V8 regions of the 16S rDNA failed to detect the three community members in only 7% of consortia, but provided incorrect information about dominance or co-dominance for 85% and 89% of consortia with the primer sets for the V6-V8 and V3 regions, respectively. The high failure rate in detection of dominant B. cepacia with the primers for the V6-V8 region was attributable to a single nucleoticle primer mismatch in the target sequences of both, the forward and reverse primer. Amplification bias in PCR of E. coli and S. maltophilia for the V6-V8 region and for all three organisms for the V3 region occurred due to interference of genomic DNA in PCR-DGGE, since a nested PCR approach, where PCR-DGGE was started from mixtures of 16S rRNA genes of the organisms, provided correct information about the relative abundance of original DNA in the sample. Multiple bands were not observed in pure culture amplicons produced with the V6-V8 primer pair, but pure culture V3 DGGE profiles of E. coli, S. maltophilia and B. cepacia contained 5, 3 and 3 bands, respectively. These results demonstrate DGGE was suitable for identification of all important community members in the three-membered artificial consortium, but not for identification of the dominant organisms in this small community. Multiple DGGE bands obtained for single organisms with the V3 primer pair could greatly confound interpretation of DGGE profiles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Cosmomycin D (CosD) is an anthracycline that has two trisaccharide chains linked to its ring system. Gel electrophoresis showed that CosD formed stable complexes with plasmid DNA under conditions where daunorubicin (Dn) and doxorubicin (Dx) dissociated to some extent during the experiments. The footprint and stability of CosD complexed with 10- and 16 trier DNA was investigated using several applications of electrospray ionisation mass spectrometry (ESI-MS). ESI-MS binding profiles showed that fewer CosD molecules bound to the sequences than Dn or Dx. In agreement with this, ESI-MS analysis of nuclease digestion products of the complexes showed that CosD protected the DNA to a greater extent than Dn or Dx. In tandem MS experiments, all CosD-DNA complexes were more stable than Dn- and Dx-DNA complexes. These results Support that CosD binds more tightly to DNA and exerts a larger footprint than ESI-MS investigations of the binding properties of CosD Could be carried out rapidly and using only small amounts of sample. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Aims: Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent. Methods and Results: About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx(1), stx(2), eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)-PCR was performed to investigate the variants of stx(1) and stx(2), and the flagellar antigen (fliC) genes in nonmotile isolates. Five isolates were eae(+) and stx(-), and belonged to serotypes O128:H2/beta-intimin (2), O145:H2/gamma, O153:H7/beta and O178:H7/epsilon. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx(1c)stx(2d-O118) (46.9%), stx(1c) (27.2%), stx(2d-O118) (23.4%), and stx(1c)stx(2dOX3a) (2.5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates. Conclusions: This study demonstrated that healthy sheep in Sao Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC. Significance and Impact of the Study: As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.
Resumo:
We describe a cross-sectional, survey to identify risk factors for colonisation of neonates by extended-spectrum P-Lactamase (ESBL)-producing Klebsiella pneumoniae. This occurred following exposure to a colonised healthcare worker during an outbreak in an intermediate-risk neonatal. unit. In total, 120 neonates admitted consecutively during a three-month period were screened for ESBL-producing K. pneumoniae by rectal swabbing and 27 were identified as colonised. Multivariate analysis showed colonisation to be independently associated with use of antibiotics and absence of breastfeeding. Previous use of antibiotics presented an odds ratio (OR) of 12.3 [95% confidence interval. (Cl): 3.66-41.2, P < 0.001]. The most commonly used antibiotics were penicillin and amikacin. Breastfeeding was associated with reduced risk for colonisation (OR: 0.22; 95% Cl: 0.05-0.99; P = 0.049). Nine isotates recovered during the first stage of the outbreak and 27 isolates from surveillance cultures were typed thereafter by pulsed-field gel electrophoresis, revealing six different profiles (A-F). Clones A, C, and E were implicated in the first stage of the outbreak, whereas among the 27 strains recovered from surveillance cultures, all six clones were identified. Clone A was also found on the hand of a nursing auxiliary with onychomycosis. We concluded that prior antimicrobial use predisposed to colonisation. The possible role of breastfeeding as a protective factor needs to be further elucidated. Detection of different genotypes of ESBL-producing K. pneumonioe suggests that dissemination of mobile genetic elements bearing the ESBL gene may have been superimposed on the simple dissemination of a clone during the outbreak. (c) 2008 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background and Objective: Although certain serotypes of Aggregatibacter actinomycetemcomitans are associated more with aggressive periodontitis than are other serotypes, the correlation between distinct lineages and virulence traits in this species is poorly understood. This study aimed to evaluate the polymorphism of genes encoding putative virulence factors of clinical isolates, and to correlate these findings with A. actinomycetemcomitans serotypes, genotypes and periodontal status of the hosts. Material and Methods: Twenty-six clinical isolates from diverse geographic populations with different periodontal conditions were evaluated. Genotyping was performed using pulse-field gel electrophoresis. Polymorphisms in the genes encoding leukotoxin, Aae, ApaH and determinants for serotype-specific O polysaccharide were investigated. Results: The isolates were classified into serotypes a-f, and exhibited three apaH genotypes, five aae alleles and 25 macrorestriction profiles. Two serotype b isolates (7.7%), obtained from Brazilian patients with aggressive periodontitis, were associated with the highly leukotoxic genotype; these isolates showed identical fingerprint patterns and aae and apaH genotypes. Serotype c, obtained from various periodontal conditions, was the most prevalent among Brazilian isolates, and isolates were distributed in two aae alleles, but formed a genetically distinct group based on apaH analysis. Cluster analysis showed a close relationship between fingerprinting genotypes and serotypes/apaH genotypes, but not with aae genotypes. Conclusion: Apart from the deletion in the ltx promoter region, no disease-associated markers were identified. Non-JP2-like strains recovered from individuals with periodontal disease exhibited considerable genetic variation regarding aae/apaH genotypes, serotypes and XhoI DNA fingerprints.
Resumo:
Low-Density Lipoprotein (LDL), often known as ""bad cholesterol"" is one of the responsible to increase the risk of coronary arterial diseases. For this reason, the cholesterol present in the LDL particle has become one of the main parameters to be quantified in routine clinical diagnosis. A number of tools are available to assess LDL particles and estimate the cholesterol concentration in the blood. The most common methods to quantify the LDL in the plasma are the density gradient ultracentrifugation and nuclear magnetic resonance (NMR). However, these techniques require special equipments and can take a long time to provide the results. In this paper, we report on the increase of the Europium emission in Europium-oxytetracycline complex aqueous solutions in the presence of LDL. This increase is proportional to the LDL concentration in the solution. This phenomenum can be used to develop a method to quantify the number of LDL particles in a sample. A comparison between the performances of the oxytetracycline and the tetracycline in the complexes is also made.
Resumo:
Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen`s secondary structure is affected by all three studied surfactants (decrease in alpha-helix and an increase in beta-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Two aspartyl proteases activities were identified and isolated from Trypanosoma cruzi epimastigotes: cruzipsin-I (CZP-I) and cruzipsin-II (CZP-II). One was isolated from a soluble fraction (CZP-II) and the other was solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate(CZP-I). The molecular mass of both proteases was estimated to be 120 kDa by HPLC gel filtration and the activity of the enzymes was detected in a doublet of bands (56 and 48 kDa) by substrate-sodium dodecyl sulphate-polyacrylamide-gelatin gel electrophoresis. Substrate specificity studies indicated that the enzymes consistently hydrolyze the cathepsin D substrate Phe-Ala-Ala-Phe (4-NO(2))-Phe-Val-Leu-O(4)MP but failed to hydrolyze serine and other protease substrates. Both proteases activities were strongly inhibited by the classic inhibitor pepstatin-A (>= 68%) and the aspartic active site labeling agent, 1,2-epoxy-3-(phenyl-nitrophenoxy) propane (>= 80%). These findings show that both proteases are novel T. cruzi acidic proteases. The physiological function of these enzymes in T. cruzi has under investigation. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
An outbreak of infections affecting 311 patients who had undergone different invasive procedures occurred in 2004 and 2005 in the city of Belem, in the northern region of Brazil. Sixty-seven isolates were studied; 58 were from patients who had undergone laparoscopic surgeries, 1 was from a patient with a postinjection abscess, and 8 were from patients who had undergone mesotherapy. All isolates were rapidly growing nonpigmented mycobacteria and presented a pattern by PCR-restriction enzyme analysis of the hsp65 gene with BstEII of bands of 235 and 210 bp and with HaeIII of bands of 200, 70, 60, and 50 bp, which is common to Mycobacterium abscessus type 2, Mycobacterium bolletii, and Mycobacterium massiliense. hsp65 and. rpoB gene sequencing of a subset of 20 isolates was used to discriminate between these three species. hsp65 and rpoB sequences chosen at random from 11 of the 58 isolates from surgical patients and the postinjection abscess isolate presented the highest degrees of similarity with the corresponding sequences of M. massiliense. In the same way, the eight mesotherapy isolates were identified as M. bolletii. Molecular typing by pulsed-field gel electrophoresis (PFGE) grouped all 58 surgical isolates, while the mesotherapy isolates presented three different PFGE patterns and the postinjection abscess isolate showed a unique PFGE pattern. In conclusion, molecular techniques for identification and typing were essential for the discrimination of two concomitant outbreaks and one case, the postinjection abscess, not related to either outbreak all of which were originally attributed to a single strain of M. abscessus.