168 resultados para Spectroscopy Cyclic Voltammetry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the present work we investigated the electrochemical behavior of PVA on polycrystalline Pt and single-crystal Pt electrodes. PVA hampered the characteristic hydrogen UPD and anion adsorption on all investigated surfaces, with the processes on Pt(110) being the most affected by the PVA presence. Several oxidation waves appeared as the potential was swept in the positive direction and the Pt(111) was found to be the most active for the oxidation processes. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3615965] All rights reserved.
Resumo:
Copper strike baths are extensively used in metal plating industry as they present the ability to plate adherent copper layers on less-noble metal substrates such as steel and zinc die castings. However, in the last few years, due to environmental controls and safety policies for operators, the plating industry has been interested in replacing the toxic cyanide copper strike baths with environmentally friendly baths. A broad bibliographic review showed that the published papers, referring to the new nontoxic copper strike baths, are patents, having little or no emphasis focused on electrodeposition mechanisms. Therefore, it was decided to study the copper electrodeposition mechanism from a strike alkaline bath prepared with one of the most nontoxic chelating agents cited in many patents which is the 1-hydroxyethane-1,1-diphosphonic acid, known as HEDP. This acid forms very stable water soluble complexes with Cu(2+) ions, thus cupric sulfate was used for preparing the plating bath. The results obtained through a cyclic voltammetry technique showed that Cu(2+) ion reduction to Cu from an HEDP electrodeposition bath occurs via a direct reduction reaction without a formation of Cu(+) intermediates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we report here new considerations about the relationship between the mass and charge variations (m/z relationship) in underpotential deposition (UPD), bulk deposition and also in the H(2)Se formation reaction. Nanogravimetric experiments were able to show the adsorption of H(2)SeO(3) on the AuO surface prior to the voltammetric sweep and that, after the AuO reduction, 0.40 monolayer of H(2)SeO(3) remains adsorbed on the newly reduced Au surface, which was enough to gives rise to the UPD layer. The UPD results indicate that the maximum coverage with Se(ads) on polycrystalline gold surface corresponds to approximately 0.40 monolayer, in good agreement with charge density results. The cyclic voltammetry experiments demonstrated that the amount of bulk Se obtained during the potential scan to approximately 2 Se monolayers, which was further confirmed by electrochemical quartz crystal microbalance (EQCM) measurements that pointed out a mass variation corresponding of 3 monolayers of Se. In addition, the Se thin films were obtained by chronoamperometric experiments, where the Au electrode was polarized at +0.10V during different times in 1.0 M H(2)SO(4) + 1.0 mM SeO(2). The topologic aspects of the electrodeposits were observed in Atomic Force Microscope (AFM) measurements. Finally, in highly negative potential polarizations, the H(2)Se formation was analyzed by voltammetric and nanogravimetric measurements. These finding brings a new light on the selenium electrodeposition and point up to a proposed electrochemical model for molecule controlled surface engineering. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.
Resumo:
This study describes the synthesis of a new ruthenium nitrosyl complex with the formula [RuCl(2)NO(BPA)] [BPA = (2-hydroxybenzyl)(2-methylpyridyl)amine ion], which was synthesized and characterized by spectroscopy, cyclic voltammetry, X-ray crystallography, and theoretical calculation data. The biological studies of this complex included in vitro cytotoxic assays, which revealed its activity against two different tumor cell lines (HeLa and Tm5), with efficacy comparable to that of cisplatin, a metal-based drug that is administered in clinical treatment. The in vivo studies showed that [RuCl2NO(BPA)] is effective in reducing tumor mass. Also, our results suggest that the mechanism of action of [RuCl(2)NO(BPA)] includes binding to DNA, causing fragmentation of this biological molecule, which leads to apoptosis. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The ""Ru(P-P)"" unit (P-P = diphosphine) is recognized to be an important core in catalytic species for hydrogenation of unsaturated organic substrates. Thus, in this study we synthesized six new complexes containing this core, including the binuclear complex [(dppb)(CO)Cl(2)Ru-pz-RuCl(2)(CO)(dPPb)] (pz = pyrazine) which can be used as a precursor for the synthesis of cationic carbonyl species of general formula [RuCl(CO)(dppb)(N-N)]PF(6) (N-N = diimine). Complexes with the formula (RuCl(py)(dppb)(N-N)]PF(6) were synthesized by exhaustive electrolysis of these carbonyl compounds or from the precursors [RuCl(2)(dppb)(N-N)]. The new complexes were characterized by microanalysis, conductivity measurements, IR and (31)P{(1)H)} NMR spectroscopy, cyclic voltammetry and X-ray crystallography. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis and characterization of ruthenium compounds of the type [RuCl(2)(NO)(dppp)(L)]PF(6) [dppp = 1,3-bis(diphenylphosphino)propane; L = pyridine, 4-methylpyridine, 4-phenylpyridine and dimethyl sulfoxide] are described. The complexes were characterized by elemental analysis, UV/Vis and infrared spectroscopy, cyclic voltammetry, and X-ray crystallography for the complexes with the pyridine and 4-methylpyridine ligands. In vitro evaluation of these nitrosyl complexes revealed cytotoxic activity from 7.1 to 19.0 mu M against the MDA-MB-231 breast tumor cells and showed that, in this case, they are more active than the reference metallodrug cisplatin. The 1,3-bis(diphenylphosphino)propane and the N-heterocyclic ligands alone failed to show cytotoxic activities at the concentrations tested (maximum concentration utilized = 200 mu M). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO2.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone.
Resumo:
Thiol-functionalised silica films were deposited on various electrode surfaces (gold, platinum, glassy carbon) by spin-coating sol-gel mixtures in the presence of a surfactant template. Film formation occurred by evaporation induced self-assembly (EISA) involving the hydrolysis and (co)condensation of silane and organosilane precursors on the electrode surface. The characterization of such material was performed by IR spectroscopy, thermogravimetry (TG), elemental analysis (EA), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV).
Resumo:
Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.
Resumo:
This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.
Resumo:
This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.
Resumo:
This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.