8 resultados para Sonine-Schafheitlin Formula
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present electron-microprobe and single-crystal X-ray-diffraction data for a microlite-group mineral with a formula near NaCaTa(2)O(6)F from the Morro Redondo mine, Coronel Murta, Minas Gerais, Brazil. On the basis of these data, the formula is A(Na(0.88)Ca(0.88)Pb(0.02)square(0.22))(Sigma 2.00) (B)(Ta(1.70)Nb(0.14)Si(0.12)As(0.04))(Sigma 2.00) (X)[(O(5.75)(OH)(0.25)](Sigma 6.00) (Y)(F(0.73)square(0.27))(Sigma 1.00). According to the new nomenclature for the pyrochlore-supergroup minerals, it is intermediate between fluornatromicrolite and "" fluorcalciomicrolite"". The crystal structure, F (d3) over barm, a = 10.4396(12) angstrom, has been refined to an R(1) value of 0.0258 (wR(2) = 0.0715) for 107 reflections (MoK alpha radiation). There is a scarcity of crystal-chemical data for pyrochlore-supergroup minerals in the literature. A compilation of these data is presented here.
Resumo:
Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley-Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.
Resumo:
We consider a continuous path of bounded symmetric Fredholm bilinear forms with arbitrary endpoints on a real Hilbert space, and we prove a formula that gives the spectral flow of the path in terms of the spectral flow of the restriction to a finite codimensional closed subspace. We also discuss the case of restrictions to a continuous path of finite codimensional closed subspaces. As an application of the formula, we introduce the notion of spectral flow for a periodic semi-Riemannian geodesic, and we compute its value in terms of the Maslov index. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.
Resumo:
One may construct, for any function on the integers, an irreducible module of level zero for affine sl(2) using the values of the function as structure constants. The modules constructed using exponential-polynomial functions realize the irreducible modules with finite-dimensional weight spaces in the category (O) over tilde of Chari. In this work, an expression for the formal character of such a module is derived using the highest weight theory of truncations of the loop algebra.