90 resultados para Silver concentration
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of indicating loss of marginal seal in the composite restorations; the 3-step conventional adhesive system had better performance regarding microleakage in enamel on primary and permanent teeth.
Resumo:
In the present work we report the characterization of PbO-GeO(2) films containing silver nanoparticles (NPs). Radio Frequency (RF) co-sputtering was used for deposition of amorphous films on glass substrates. Targets of 60PbO-40GeO(2) (in wt%) and bulk silver with purity of 99.99% were RF-sputtered using 3.5 m Torr of argon. The concentration of silver and gold NPs in the films was controlled varying the RF-power applied to the targets (40-50W for the PbO-GeO(2) target; 6-8 W for the metallic target). The films obtained were annealed in air at different temperatures and various periods of time. Absorption measurements have shown strong NPs surface plasmon bands. Different widths and peak wavelengths were observed, indicating that size, shape and distribution of the silver NPs are dependent on the deposition process parameters and on the annealing of the samples. X-Ray Fluorescence and Transmission Electron Microscopy were also used to characterize the samples. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The interaction of emeraldine base (PANI-EB) with silver and gold colloids was probed by using Surface-Enhanced Resonance Raman Scattering (SERRS) at 3 different exciting radiations. Due to the great sensitivity of SERRS technique the detection limit of PANI-EB concentration was ca. 2 x 10(-7) mol L(-1) in Ag and Au colloidal suspensions. The UV-vis-NIR spectra of metal colloids in function of PANI-EB concentrations showed that gold colloids present a higher degree of aggregation than silver colloids. SERRS of PANI-EB on metal colloids allowed the study of the polymeric species formed primarily on the metallic surface. The polymer formed after the adsorption of PANI-EB on metallic nanoparticles is strongly dependent on the nature of the metal colloids. The oxidation of PANI-EB to pernigraniline occurred for silver colloids, while a doping process of PANI-EB on Au nanoparticles was evidenced through the observation of the characteristic SERRS spectrum of emeraldine salt at 1064nm.
Resumo:
PURPOSE: To evaluate the effect of the use of 0.5% and 2% chlorhexidine digluconate on the immediate bond strength of a conventional adhesive system to dentin in primary teeth. METHODS: Twenty-one healthy primary molars were divided into three groups (n=7), being one control (A) and two experimental groups (B and C). After dentin exposure, in Group (A) the adhesive procedure was performed using 37% phosphoric acid gel (15 s); dentin was washed (15 s), air dried (30 s) and rehydrated with water. Groups B and C followed similar procedures but for re-hydration with 0.5% and 2% chlorhexidine, respectively, for 30 s. A resin composite block was built simulating a restoration, and the teeth were stored in distilled water at 37°C for 24 h before the microtensile bond strength test. The bond strength data were analyzed by analysis of variance. RESULTS: No statistically significant difference in bond strength was found among the tested groups (P>0.05) CONCLUSION: The 0.5% and 2% concentrations of chlorhexidine presented similar behavior and caused no adverse effects on the bond strength to dentin in primary teeth.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.
Resumo:
The objective of this study was to extract and concentrate calcium oxalate (CaOx) crystals from plant leaves that form the above mentioned crystals. The chemical and physical studies of CaOx from plant to be performed depend on an adequate amount of the crystals. The plant used in this study was croton (Codiaeum variegatum). The leaves were ground in a heavy duty blender and sieved through a 0.20 mm sieve. The suspension obtained was suspended in distilled water. The crystals were concentrated at the bottom of a test tube. The supernatant must be washed until it is free of plant pigments and other organic substances. Biogenic CaOx crystals have well-defined and sharp peaks, indicating very high crystallinity. Moreover, the CaOx crystals were not damaged during the extraction procedure, as can be seen on the scanning electron microscope images. The porposed method can be considered efficient to extract and concentrate biogenic calcium oxalate.
Resumo:
OBJECTIVE: New drugs have to be assessed in endodontic therapy due to the presence of microorganisms resistant to therapeutic procedures. Thus, this study evaluated the time- and concentration-dependent cytotoxicity of different antibiotics used in endodontic therapy. MATERIAL AND METHODS: Human gingival fibroblasts were treated and divided into the following experimental groups: Group I - control; Group II - ciprofoxacin hydrochloride; Group III - clyndamicin hydrochloride; and Group IV - metronidazole. Each drug was used at concentrations of 5, 50, 150, and 300 mg/L for 24, 48, 72, and 96 h. Cytotoxicity was evaluated by the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and spectrophotometric reading of ELISA plates. The results were analyzed by BioEstat 4.0 software using Kruskal-Wallis and Dunn's tests at a signifcance level of 5%. Cell viability was assessed for the different concentrations and times. RESULTS: All drugs presented dose-dependent cytotoxicity. Concentrations of 5 and 50 mgjL produced viable fibroblasts at all experimental times in all groups. CONCLUSIONS: Cell viability at 24 h was greater than in the other experimental times. Comparison between the same concentrations of antibiotics at different times showed that metronidazole presented the highest cell viability at 72 and 96 h compared to the other antibiotics, whereas clyndamicin hydrochloride showed higher cell viability at 72 h than ciprofoxacin hydrochloride.
Resumo:
Infrared-to-visible and infrared-to-infrared frequency upconversion processes in Yb(3+)-Tm(3+) doped PbO-GeO(2) glasses containing silver nanoparticles (NPs) were investigated. The experiments were performed by exciting the samples with a diode laser operating at 980 nm (in resonance with the Yb(3+) transition (2)F(7/2)->(2)F(5/2)) and observing the photoluminescence (PL) in the visible and infrared regions due to energy transfer from Yb(3+) to Tm(3+) ions followed by excited state absorption in the Tm3+ ions. The intensified local field in the vicinity of the metallic NPs contributes for enhancement in the PL intensity at 480 nm (Tm(3+) :(1)G(4)->(3)H(6)) and at 800 nm (Tm(3+) : (3)H(4) -> (3)H(6)). (C) 2009 American Institute of Physics. [doi:10.1063/1.3211300]
Resumo:
We report on energy transfer studies in terbium (Tb(3+))-europium (Eu(3+)) doped TeO(2)-ZnO-Na(2)O-PbO glass containing silver nanostructures. The samples excitation was made using ultraviolet radiation at 355 nm. Luminescence spectra were recorded from approximate to 480 to approximate to 700 nm. Enhanced Eu(3+) luminescence at approximate to 590 nm (transition (5)D(0)-(7)F(1)) and approximate to 614 nm (transition (5)D(0)-(7)F(2)) are observed. The large luminescence enhancement was obtained due to the simultaneous contribution of the Tb(3+)-Eu(3+) energy transfer and the contribution of the intensified local field on the Eu(3+) ions located near silver nanostructures.
Resumo:
Luminescence properties of Tb(3+) doped TeO(2)-ZnO-Na(2)O-PbO glasses containing silver nanoparticles (NPs) were investigated. The absorption band due to the surface plasmon resonance in the NPs was observed. Its amplitude increases with the heat treatment of the samples that controls the nucleation of the NPs. Tb(3+) emission bands centered at approximate to 485, approximate to 550, approximate to 585, and approximate to 623 nm were detected for excitation at 377 nm. The whole spectrum is intensified by the appropriate annealing time of the samples. Enhancement by approximate to 200% of the Tb(3+) luminescence at 550 nm was observed for samples annealed at 270 degrees C during 62 h. This enhancement effect is due to the local field amplitude that increases with the amount of silver NPs and their aggregates. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3010867]
Resumo:
A frequency upconversion process in Pr(3+) doped TeO(2)-ZnO glasses containing silver nanoparticles is studied under excitation with a nanosecond laser operating at 590 nm, in resonance with the (3)H(4)-->(1)D(2) transition. The excited Pr(3+) ions exchange energy in the presence of the nanoparticles, originating efficient conversion from orange to blue. The enhancement in the intensity of the luminescence at similar to 482 nm, corresponding to the (3)P(0)-->(3)H(4) transition, is due to the influence of the large local field on the Pr(3+) ions, which are located near the metallic nanoparticles. (C) 2008 American Institute of Physics.
Resumo:
Background: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.
Resumo:
Objective: The aim of this study was to assess the effects of 830 and 670 nm laser on malondialdehyde (MDA) concentration in random skin-flap survival. Background Data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and activating superoxide-dismutase delivery, thus helping the inhibition of free-radical action and consequently reducing necrosis. Materials and Methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each one. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group; group 2 received 830 nm laser radiation; and group 3 was submitted to 670 nm laser radiation. The animals underwent laser therapy with 36 J/cm(2) energy density immediately after surgery and on the 4 days subsequent to surgery. The application site of the laser radiation was 1 point, 2.5 cm from the flap's cranial base. The percentage of the skin-flap necrosis area was calculated 7 days postoperative using the paper-template method, and a skin sample was collected immediately after as a way of determining the MDA concentration. Results: Statistically significant differences were found between the necrosis percentages, with higher values seen in group 1 compared with groups 2 and 3. Groups 2 and 3 did not present statistically significant differences (p > 0.05). Group 3 had a lower concentration of MDA values compared to the control group (p < 0.05). Conclusion: LLLT was effective in increasing the random skin-flap viability in rats, and the 670 nm laser was efficient in reducing the MDA concentration.
Resumo:
Background: Papillary thyroid carcinoma (PTC) is frequently associated with a RET gene rearrangement that generates a RET/PTC oncogene. RET/PTC is a fusion of the tyrosine kinase domain of RET to the 50 portion of a different gene. This fusion results in a constitutively active MAPK pathway, which plays a key role in PTC development. The RET/PTC3 fusion is primarily associated with radiation-related PTC. Epidemiological studies show a lower incidence of PTC in radiation-exposed regions that are associated with an iodine-rich diet. Since the influence of excess iodine on the development of thyroid cancer is still unclear, the aim of this study is to evaluate the effect of high iodine concentrations on RET/PTC3-activated thyroid cells. Methods: PTC3-5 cells, a rat thyroid cell lineage harboring doxycycline-inducible RET/PTC3, were treated with 10(-3) M NaI. Cell growth was analyzed by cell counting and the MTT assay. The expression and phosphorylation state of MAPK pathway-related (Braf, Erk, pErk, and pRet) and thyroid-specific (natrium-iodide symporter [Nis] and thyroid-stimulating hormone receptor [Tshr]) proteins were analyzed by Western blotting. Thyroid-specific gene expression was further analyzed by quantitative reverse transcription (RT)-polymerase chain reaction. Results: A significant inhibition of proliferation was observed, along with no significant variation in cell death rate, in the iodine-treated cells. Further, iodine treatment attenuated the loss of Nis and Tshr gene and protein expression induced by RET/PTC3 oncogene induction. Finally, iodine treatment reduced Ret and Erk phosphorylation, without altering Braf and Erk expression. Conclusion: Our results indicate an antioncogenic role for excess iodine during thyroid oncogenic activation. These findings contribute to a better understanding of the effect of iodine on thyroid follicular cells, particularly how it may play a protective role during RET/PTC3 oncogene activation.
Resumo:
Thermodiffusion in a lyotropic mixture of water and potassium laurate is investigated by means of an optical technique (Z scan) distinguishing the index variations due to the temperature gradient and the mass gradients. A phenomenological framework allowing for coupled diffusion is developed in order to analyze thermodiffusion in multicomponent systems. An observable parameter relating to the mass gradients is found to exhibit a sharp change around the critical micellar concentration, and thus may be used to detect it. The change in the slope is due to the markedly different values of the Soret coefficients of the surfactant and the micelles. The difference in the Soret coefficients is due to the fact that the micellization process reduces the energy of interaction of the ball of amphiphilic molecules with the solvent.