4 resultados para Robust Statistics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved
Resumo:
Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We propose a likelihood ratio test ( LRT) with Bartlett correction in order to identify Granger causality between sets of time series gene expression data. The performance of the proposed test is compared to a previously published bootstrapbased approach. LRT is shown to be significantly faster and statistically powerful even within non- Normal distributions. An R package named gGranger containing an implementation for both Granger causality identification tests is also provided.
A robust Bayesian approach to null intercept measurement error model with application to dental data
Resumo:
Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.