51 resultados para RAYS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objectives: The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. Methods: 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. Results: The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were frequencies of nuclear alterations indicate of apoptosis (P < 0.001). Conclusions: These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.
Resumo:
The shadowing of cosmic ray primaries by the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 sigma level and the shadow of the sun at the 3.8 sigma level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 +/- 0.12 degrees. Hints of interplanetary magnetic field effects were observed in both the sun and moon shadow. Published by Elsevier B.V.
Resumo:
Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than similar to 6 x 10(19) eV and AGN at a distance less than similar to 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuz`min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.
Resumo:
The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E(th) = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E(th) are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above E(th)/Z (for illustrative values of Z = 6, 13, 26). If the anisotropies above E(th) are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.
Resumo:
We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The properties of galactic cosmic rays are investigated with the KASCADE-Grande experiment in the energy range between 10(14) and 10(18) eV. Recent results are discussed. They concern mainly the all-particle energy spectrum and the elemental composition of cosmic rays. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Resumo:
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz`min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.
Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory
Resumo:
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E(-gamma) with index gamma = 3 3 below the ankle which is measured at log(10)(E(ankle)/eV) = 18 6 Above the ankle the spectrum is described by a power law with index 2 6 followed by a flux suppression, above about log(10)(E/eV) = 19 5, detected with high statistical significance (C) 2010 Elsevier B V All rights reserved
Resumo:
Given a Lorentzian manifold (M, g), an event p and an observer U in M, then p and U are light conjugate if there exists a lightlike geodesic gamma : [0, 1] -> M joining p and U whose endpoints are conjugate along gamma. Using functional analytical techniques, we prove that if one fixes p and U in a differentiable manifold M, then the set of stationary Lorentzian metrics in M for which p and U are not light conjugate is generic in a strong sense. The result is obtained by reduction to a Finsler geodesic problem via a second order Fermat principle for light rays, and using a transversality argument in an infinite dimensional Banach manifold setup.
Resumo:
Background: Community-acquired pneumonia (CAP) is a leading cause of childhood death. There are few published reports of radiographic findings among children with severe CAP. Objective: To describe chest X-ray (CXR) findings and assess association between these radiographic findings and pneumococcal isolation in children with severe CAP. Methods: A prospective, multicenter, observational study was conducted in 12 centers in Argentina, Brazil, and the Dominican Republic. Children aged 3-59 months, hospitalized with severe pneumonia, were included. On admission, blood and pleural effusion cultures were performed. Streptococcus pneumoniae was identified according to standard procedures in the respective national reference laboratory. Chest X-rays were taken on admission and read before the culture results were reported. Results: Out of 2,536 enrolled patients, 283 (11.2%) had S. pneumoniae isolated, in 181 cases (7.1%) from blood. The follow radiographic patterns were observed: alveolar infiltrate (75.2%), pleural effusion (15.6%), and interstitial infiltrate (9.2%). Overall, pleural effusion was associated with pneumococcal isolation and pneumococcal bacteremia (P < 0.001). Infiltrates were unilateral (78.7%) or bilateral (21.3%), right-sided (76%) or left-sided (24%), in the lower lobe (53.6%) or the upper lobe (46.4%). Multivariate analysis including patients with affection of only one lobe showed that upper lobe affection and pleural effusion were associated with pneumococcal isolation (OR 1.8, 95% CI, 1.3-2.7; OR 11.0, 95% CI, 4.6-26.8, respectively) and with pneumococcal bacteremia (OR 1.7, 95% CI, 1.2-2.6; OR 3.1, 95% CI, 1.2-8.0, respectively). Conclusions: Three-quarters of the patients studied had alveolar infiltrates. Upper lobe compromising and pleural effusion were associated with pneumococcal invasive disease. Pediatr Pulmonol. 2010; 45:1009-1013. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: The aim of the present study is to evaluate the use of anorganic bovine bone (ABB) associated with a collagen membrane (CM) for a sinus graft by means of clinical, histologic, and radiographic parameters in cases with bone availability <= 7 mm. A preliminary evaluation consisted of a clinical examination, computed tomography (CT), and a panoramic x-ray. Methods: Ninety-two patients requiring bilateral sinus grafts and 222 requiring unilateral procedures (total: 406 sinuses) participated in this study. A total of 1,025 implants were placed in the grafted sinuses. A total of 118 implants were placed simultaneously with the sinus graft (one stage), and 907 implants were placed in a subsequent surgery (two stages), 6 to 12 months after the graft was performed. In seven cases, a biopsy was harvested for histomorphometric analysis. Recall appointments were scheduled every 6 months, and panoramic and periapical x-rays were required every year for 3 years. Results: Among 1,025 implants, 19 were lost (survival rate: 98.1%). The difference in survival rates for implants placed in native bone: <= 3 mm (98.1%), >3 to <= 5 mm (98.6%), and >5 to <= 7 mm (97.0%) was not statistically significant (P = 0.3408). The survival rates for implants with rough and machined surfaces (98.6% and 97.0%, respectively) were not statistically significant (P = 0.0840). The histomorphometric analysis showed new bone formation (39.0% +/- 12%), marrow space (52.9% +/- 9.3%), and residual ABB (8% +/- 2.7%). Conclusion: Our results indicated that 1,025 implants placed in sinuses grafted exclusively with ABB combined with CM led to an excellent and predictable survival rate of 98.1%. J Periodontol 2009;80:1920-1927.
Resumo:
We have analyzed XMM-Newton archive data for five clusters of galaxies (redshifts 0.223-0.313) covering a wide range of dynamical states, from relaxed objects to clusters undergoing several mergers. We present here temperature maps of the X-ray gas together with a preliminary interpretation of the formation history of these clusters. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
MAGNETOHYDRODYNAMIC SIMULATIONS OF RECONNECTION AND PARTICLE ACCELERATION: THREE-DIMENSIONAL EFFECTS
Resumo:
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.