36 resultados para Propagation prediction models
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objective: Bronchial typical carcinoid tumors are tow-grade malignancies. However, metastases are diagnosed in some patients. Predicting the individual risk of these metastases to determine patients eligible for a radical lymphadenectomy and patients to be followed-up because of distant metastasis risk is relevant. Our objective was to screen for predictive criteria of bronchial typical carcinoid tumor aggressiveness based on a logistic regression model using clinical, pathological and biomolecular data. Methods: A multicenter retrospective cohort study, including 330 consecutive patients operated on for bronchial typical carcinoid tumors and followed-up during a period more than 10 years in two university hospitals was performed. Selected data to predict the individual risk for both nodal and distant metastasis were: age, gender, TNM staging, tumor diameter and location (central/peripheral), tumor immunostaining index of p53 and Ki67, Bcl2 and the extracellular density of neoformed microvessels and of collagen/elastic extracellular fibers. Results: Nodal and distant metastasis incidence was 11% and 5%, respectively. Univariate analysis identified all the studied biomarkers as related to nodal metastasis. Multivariate analysis identified a predictive variable for nodal metastasis: neo angiogenesis, quantified by the neoformed pathological microvessels density. Distant metastasis was related to mate gender. Discussion: Predictive models based on clinical and biomolecular data could be used to predict individual risk for metastasis. Patients under a high individual risk for lymph node metastasis should be considered as candidates to mediastinal lymphadenectomy. Those under a high risk of distant metastasis should be followed-up as having an aggressive disease. Conclusion: Individual risk prediction of bronchial typical carcinoid tumor metastasis for patients operated on can be calculated in function of biomolecular data. Prediction models can detect high-risk patients and help surgeons to identify patients requiring radical lymphadenectomy and help oncologists to identify those as having an aggressive disease requiring prolonged follow-up. (C) 2008 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Resumo:
Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
This paper presents results of laboratory testing of unrestrained drying shrinkage during a period of 154 days of different concrete mixtures from the Brazilian production line that utilize ground granulated blast-furnace slag in their compositions. Three concrete mixtures with water/cement ratio of 0.78(M1), 0.41(M2), and 0.37(M3) were studied. The obtained experimental data were compared with the analytical results from prediction models available in the literature: the ACI 209 model (ACI), the B3 model (B3), the Eurocode 2 model (EC2), the GL 2000 model (GL), and the Brazilian NBR 6118 model (NBR), and an analysis of the efficacy of these models was conducted utilizing these experimental data. In addition, the development of the mechanical properties (compressive strength and modulus of elasticity) of the studied concrete mixtures was also measured in the laboratory until 126 days. From this study, it could be concluded that the ACI and the GL were the models that most approximated the experimental drying shrinkage data measured during the analyzed period of time.
Resumo:
Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network. Copyright (c) 2008 J. R. C. Piqueira and F. B. Cesar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Compartmental epidemiological models have been developed since the 1920s and successfully applied to study the propagation of infectious diseases. Besides, due to their structure, in the 1960s an interesting version of these models was developed to clarify some aspects of rumor propagation, considering that spreading an infectious disease or disseminating information is analogous phenomena. Here, in an analogy with the SIR (Susceptible-Infected-Removed) epidemiological model, the ISS (Ignorant-Spreader-Stifler) rumor spreading model is studied. By using concepts from the Dynamical Systems Theory, stability of equilibrium points is established, according to propagation parameters and initial conditions. Some numerical experiments are conducted in order to validate the model.
Resumo:
The aim of this study was to compare REML/BLUP and Least Square procedures in the prediction and estimation of genetic parameters and breeding values in soybean progenies. F(2:3) and F(4:5) progenies were evaluated in the 2005/06 growing season and the F(2:4) and F(4:6) generations derived thereof were evaluated in 2006/07. These progenies were originated from two semi-early, experimental lines that differ in grain yield. The experiments were conducted in a lattice design and plots consisted of a 2 m row, spaced 0.5 m apart. The trait grain yield per plot was evaluated. It was observed that early selection is more efficient for the discrimination of the best lines from the F(4) generation onwards. No practical differences were observed between the least square and REML/BLUP procedures in the case of the models and simplifications for REML/BLUP used here.
Resumo:
Various methods are currently used in order to predict shallow landslides within the catchment scale. Among them, physically based models present advantages associated with the physical description of processes by means of mathematical equations. The main objective of this research is the prediction of shallow landslides using TRIGRS model, in a pilot catchment located at Serra do Mar mountain range, Sao Paulo State, southeastern Brazil. Susceptibility scenarios have been simulated taking into account different mechanical and hydrological values. These scenarios were analysed based on a landslide scars map from the January 1985 event, upon which two indexes were applied: Scars Concentration (SC - ratio between the number of cells with scars, in each class, and the total number of cells with scars within the catchment) and Landslide Potential (LP - ratio between the number of cells with scars, in each class, and the total number of cells in that same class). The results showed a significant agreement between the simulated scenarios and the scar's map. In unstable areas (SF <= 1), the SC values exceeded 50% in all scenarios. Based on the results, the use of this model should be considered an important tool for shallow landslide prediction, especially in areas where mechanical and hydrological properties of the materials are not well known.
Resumo:
In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.
Resumo:
In the last decade the Sznajd model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a version of the Sznajd model with a generalized bounded confidence rule-a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabaacutesi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.
Resumo:
We use the density functional theory/local-density approximation (DFT/LDA)-1/2 method [L. G. Ferreira , Phys. Rev. B 78, 125116 (2008)], which attempts to fix the electron self-energy deficiency of DFT/LDA by half-ionizing the whole Bloch band of the crystal, to calculate the band offsets of two Si/SiO(2) interface models. Our results are similar to those obtained with a ""state-of-the-art"" GW approach [R. Shaltaf , Phys. Rev. Lett. 100, 186401 (2008)], with the advantage of being as computationally inexpensive as the usual DFT/LDA. Our band gap and band offset predictions are in excellent agreement with experiments.
Resumo:
Fatigue and crack propagation are phenomena affected by high uncertainties, where deterministic methods fail to predict accurately the structural life. The present work aims at coupling reliability analysis with boundary element method. The latter has been recognized as an accurate and efficient numerical technique to deal with mixed mode propagation, which is very interesting for reliability analysis. The coupled procedure allows us to consider uncertainties during the crack growth process. In addition, it computes the probability of fatigue failure for complex structural geometry and loading. Two coupling procedures are considered: direct coupling of reliability and mechanical solvers and indirect coupling by the response surface method. Numerical applications show the performance of the proposed models in lifetime assessment under uncertainties, where the direct method has shown faster convergence than response surface method. (C) 2010 Elsevier Ltd. All rights reserved.