12 resultados para Propagation of lights
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
(In vitro Propagation of Heliconia bihai L. from Zygotic Embryos). The internal morphology of embryos from immature and mature fruits of Hcliconia bihai (L.) L. cv. Lobster Claw Two was examined. Embryos were inoculated into MS media (full MS and 1/2 MS) and GA(1) (0.2.5 and 5 mg L(-1)) with either sucrose or glucose. These plantlets were then replicated and transferred to MS medium (full MS or 1/2 MS) with 0 or 2.5 mg L(-1) BAP and their multiplication was evaluated 30 and 45 days after inoculation. The genetic variability of the multiplied plants was estimated using isoenzyme analyses. The internal morphology of the mature embryos revealed their tissues to be in more advanced stages of differentiation than immature embryos. In the conversion phase, 85% of the inoculated embryos developed into plants in the 1/2 MS medium with sucrose, in contrast to only 41% of the embryos that were cultivated with glucose. In the multiplication phase, plants cultivated in 1/2 MS medium with 2.5 mg L(-1) BAP demonstrated more buds. Isoenzyme analyses showed pattern changes in terms of the color intensity and the migration of some of the bands. These results may be associated with differences in the ages of the mother plants and of the plantlets obtained in vitro.
Resumo:
Anaplasma marginale is a tick-borne pathogen of cattle responsible for the disease anaplasmosis. Data suggest that Rhipicephalus (Boophilus) microplus and R. annulatus may be the major tick vectors of A. marginale in tropical and subtropical regions of the world. In this work we demonstrated the first infection and propagation of a Brazilian isolate of A. marginale (UFMG1) in the BME26 cell line derived originally from embryos of R. (Boophilus) microplus. The establishment of A. marginale infection in a cell line derived from R. (Boophilus) microplus is relevant for studying the A. marginale/tick interface. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.
Resumo:
In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h: 12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic information. (Author correspondence: rpmarkus@usp.br)
Resumo:
The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell ( due to the. ring of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell K(ATP) channel conductance (G(K,ATP)) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC(50) of approximately 4 mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca(2+)](i) waves to spread with a speed of approximately 80 mu m s(-1), similar to that observed experimentally in confocal [Ca(2+)](i) imaging.
Resumo:
The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.
Resumo:
The Z-scan technique is employed to obtain the nonlinear refractive index (n (2)) of the Ca(4)REO(BO(3))(3) (RECOB, where RE = Gd and La) single crystals using 30 fs laser pulses centered at 780 nm for the two orthogonal orientations determined by the optical axes (X and Z) relative to the direction of propagation of the laser beam (k//Y// crystallographic b-axis). The large values of n (2) indicate that both GdCOB and LaCOB are potential hosts for Yb:RECOB lasers operating in the Kerr-lens mode locking (KLM) regime.
Resumo:
The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality.
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
The propagation of an optical beam through dielectric media induces changes in the refractive index, An, which causes self-focusing or self-defocusing. In the particular case of ion-doped solids, there are thermal and non-thermal lens effects, where the latter is due to the polarizability difference, Delta alpha, between the excited and ground states, the so-called population lens (PL) effect. PL is a pure electronic contribution to the nonlinearity, while the thermal lens (TL) effect is caused by the conversion of part of the absorbed energy into heat. In time-resolved measurements such as Z-scan and TL transient experiments, it is not easy to separate these two contributions to nonlinear refractive index because they usually have similar response times. In this work, we performed time-resolved measurements using both Z-scan and mode mismatched TL in order to discriminate thermal and electronic contributions to the laser-induced refractive index change of the Nd3+-doped Strontium Barium Niobate (SrxBa1-xNb2O6) laser crystal. Combining numerical simulations with experimental results we could successfully distinguish between the two contributions to An. (C) 2007 Elsevier B.V. All rights reserved.