12 resultados para PROBABILITY REPRESENTATION

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific choices about how to represent complex networks can have a substantial impact on the execution time required for the respective construction and analysis of those structures. In this work we report a comparison of the effects of representing complex networks statically by adjacency matrices or dynamically by adjacency lists. Three theoretical models of complex networks are considered: two types of Erdos-Renyi as well as the Barabasi-Albert model. We investigated the effect of the different representations with respect to the construction and measurement of several topological properties (i.e. degree, clustering coefficient, shortest path length, and betweenness centrality). We found that different forms of representation generally have a substantial effect on the execution time, with the sparse representation frequently resulting in remarkably superior performance. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers an extension to the skew-normal model through the inclusion of an additional parameter which can lead to both uni- and bi-modal distributions. The paper presents various basic properties of this family of distributions and provides a stochastic representation which is useful for obtaining theoretical properties and to simulate from the distribution. Moreover, the singularity of the Fisher information matrix is investigated and maximum likelihood estimation for a random sample with no covariates is considered. The main motivation is thus to avoid using mixtures in fitting bimodal data as these are well known to be complicated to deal with, particularly because of identifiability problems. Data-based illustrations show that such model can be useful. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study further properties of a skew normal distribution, called the skew-normal-Cauchy (SNC) distribution by Nadarajah and Kotz (2003). A stochastic representation is obtained which allows alternative derivations for moments, moments generating function, and skewness and kurtosis coefficients. Issues related to singularity of the Fisher information matrix are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new approach is considered for studying the triangular distribution using the theoretical development behind Skew distributions. Triangular distribution are obtained by a reparametrization of usual triangular distribution. Main probabilistic properties of the distribution are studied, including moments, asymmetry and kurtosis coefficients, and an stochastic representation, which provides a simple and efficient method for generating random variables. Moments estimation is also implemented. Finally, a simulation study is conducted to illustrate the behavior of the estimation approach proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we construct the stationary measure of the N species totally asymmetric simple exclusion process in a matrix product formulation. We make the connection between the matrix product formulation and the queueing theory picture of Ferrari and Martin. In particular, in the standard representation, the matrices act on the space of queue lengths. For N > 2 the matrices in fact become tensor products of elements of quadratic algebras. This enables us to give a purely algebraic proof of the stationary measure which we present for N=3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents important properties of standard discrete distributions and its conjugate densities. The Bernoulli and Poisson processes are described as generators of such discrete models. A characterization of distributions by mixtures is also introduced. This article adopts a novel singular notation and representation. Singular representations are unusual in statistical texts. Nevertheless, the singular notation makes it simpler to extend and generalize theoretical results and greatly facilitates numerical and computational implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.