18 resultados para Oxygenated xanthones
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Oxygenated xanthones have been extensively investigated over the years, but there are few reports concerning their crystal structure. Our chemical investigations of Brazilian plants resulted in the isolation of four natural products named 1-hydroxyxanthone (I), 1-hydroxy-7-methoxyxanthone (II), 1,5-dihydroxy-3-methoxyxanthone (III), and 1,7-dihydroxy-3,8-dimethoxyxanthone (IV). The structures of these compounds were established on the basis of single crystal X-ray diffraction. The xanthone nucleus conformation is essentially planar with the substituents adopting the orientations less sterically hindered. In addition, classical intermolecular hydrogen bonds (O-H center dot center dot center dot O) present in III and IV give rise to infinite ribbons. However, the xanthone I does not present any intermolecular hydrogen bonds, meanwhile the xanthone II presents only a non-classical one (C-H center dot center dot center dot O). The crystal packing of all xanthone structures is also stabilized by pi-pi interactions. The fingerprint plots, derived from the Hirshfeld surfaces, exhibited significant features of each crystal structures.
Resumo:
Thin films obtained by plasma polymerization of ethyl ether, methyl or ethyl acetate, acetaldehyde, acetone and 2-propanol were compared. Infrared spectroscopy (FFIR), resistance to chemicals, contact angle measurements, X-ray photoelectron spectroscopy (XPS), optical and scanning electron microscopy (SEM), and quartz crystal microbalance (QCM) were carried out. For all films FTIR showed high intensity for polar bonds yet the films are not resistant to polar solvents. Contact angle measurements revealed hydrophilic and organophilic surfaces and XPS pointed out a high proportion of oxygenated bonds. All films showed good step coverage and peeling was significant only with acetone and 2-propanol. All films are adsorbent for organic compounds in a large scale of polarity but acetaldehyde and 2-propanol act like a selective membrane. Also, deposition of these films on hydrophobic substrates leads to island formation. A possible model to explain the results must consider the hydrogen bridge formation on 2-propanol and acetaldehyde films. Ethyl ether, ethyl and methyl acetate showed good characteristics for development of sensor and sample pretreatment using miniaturized devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this Letter we describe a 12% overall yield synthesis of a model for homoallylic oxygenated alpha-methylene-gamma-butyrolactones with relative stereochemistry defined by selective hydrogenation with Rh/Al(2)O(3). The synthesis was realized in 9 steps involving simple reactions. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
Reduction of the natural sesquiterpene lactones furanoheliangolides with Stryker's reagent is an effective process for producing eremantholides through a biomimetic pathway. Other reduction products are also formed. Oxygenated functions at C-15 of the furanoheliangolide produce an increase in the velocities of the reactions and reduce the chemoselectivity of the reagent.
Resumo:
Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e. g. isoprene) leads to the formation of oxygenated VOCs (OVOCs). The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH) and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian Aerosol Characterization Experiment (AMAZE-08) we show that the production of certain OVOCs (e. g. hydroxyacetone) from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. Recently reported fast secondary production could explain 50% of the observed discrepancy with the remaining part possibly produced via a novel primary production channel, which has been proposed theoretically. The observations of OVOCs are also used to test a recently proposed HO(x) recycling mechanism via degradation of isoprene peroxy radicals. If generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in uncertainties of modelled OH reactivity, potentially explaining a fraction of the missing OH sink over forests which has previously been largely attributed to a missing source of primary biogenic VOCs.
Resumo:
Seagrass beds have higher biomass, abundance, diversity and productivity of benthic organisms than unvegetated sediments. However, to date most studies have analysed only the macrofaunal component and ignored the abundant meiofauna present in seagrass meadows. This study was designed to test if meiobenthic communities, especially the free-living nematodes, differed between seagrass beds and unvegetated sediments. Sediment samples from beds of the eelgrass Zostera capricorni and nearby unvegetated sediments were collected in three estuaries along the coast of New South Wales, Australia. Results showed that sediments below the seagrass were finer, with a higher content of organic material and were less oxygenated than sediments without seagrass. Univariate measures of the fauna (i.e. abundance, diversity and taxa richness of total meiofauna and nematode assemblages) did not differ between vegetated and unvegetated sediments. However multivariate analysis of meiofaunal higher taxa showed significant differences between the two habitats, largely due to the presence and absence of certain taxa. Amphipods, tanaidacea, ostracods, hydrozoans and isopods occurred mainly in unvegetated sediments, while kinorhyncs, polychaetes, gastrotrichs and turbellarians were more abundant in vegetated sediments. Regarding the nematode assemblages, 32.4% of the species were restricted to Z. capricorni and 25% only occurred in unvegetated sediments, this suggests that each habitat is characterized by a particular suite of species. Epistrate feeding nematodes were more abundant in seagrass beds, and it is suggested that they graze on the microphytobenthos which accumulates underneath the seagrass. Most of the genera that characterized these estuarine unvegetated sediments are also commonly found on exposed sandy beaches. This may be explained by the fact that Australian estuaries have very little input of freshwater and experience marine conditions for most of the year. This study demonstrates that the seagrass and unvegetated sediments have discrete meiofaunal communities, with little overlap in species composition. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Superficial bottom samples were collected near diffusers of domestic sewage submarine outfalls at Araca and Saco da Capela, Sao Sebastiao Channel, Brazil. The goal of this study was to investigate the distribution and composition of live benthic foraminifera assemblages and integrate the results obtained with geochemical analyses to assess human-induced changes. According to the results obtained no environmental stress was observed near the Saco da Capela submarine outfall diffusers. The foraminifera assemblage is characterised by species typical of highly hydrodynamic environments, with well-oxygenated bottom waters and low nutrient contents. In contrast, near Araca submarine outfall, organic enrichment was denoted by high phosphorus, sulphur and, to a lesser extent, total organic carbon content. Harmful influences on foraminifera could be identified by low richness and specific diversity, as well as the predominance of detritivore feeder species, which are associated with higher organic matter flux and low oxygen in the interstitial pore water. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Baccharis dracunculifolia DC. (Asteraceae), popularly known as alecrim do campo, is a native plant from Brazil used in folk medicine as febrifuge, anti-inflammatory, antiseptic, and to treat skin sores. Also, B. dracanculifolia is the most important plant source of the Brazilian green propolis. which is recognized for its antiseptic and antiprotozoal activities. This study aimed at investigating the in vitro antiprotozoal. schistosomicidal, and antimicrobial activities of the essential oil from the leaves of R. dracunculifolia. The essential oil was obtained by hydrodistillation and analyzed by CC and GC/MS, which allowed the identification of 14 compounds, mainly oxygenated sesquiterpenes, such as ( E)nerolidol (33.51%) and spathulenol (16.24%). The essential oil showed activity against promzistigote forms of Leishmania donovani, with IC(50), values of 42 mu g/ml. The essential oil displayed high activity in the schistosomicidal assay, since all pairs of Schistosoma mansoni adult worms were dead after incubation with the essential oil (10, 50, and 100 fig/m1). B. dracunculifolia essential oil was neither cytotoxic against Vero cells, nor active in the antimicrobial and antiplasmodial assays.
Resumo:
Baccharis dracunculifolia DC (Asteraceae), a native plant from Brazil, commonly known as `Alecrim-do-campo` is widely used in folk medicine to treat inflammation, hepatic disorders and stomach ulcers, and it is the most important botanical source of Southeastern Brazilian propolis, known as green propolis. Its essential oil is composed of non-oxygenated and oxygenated terpenes. In this work, the effects of the essential oil obtained from the aerial parts of R dracunculifolia on gastric ulcers were evaluated. The antiulcer assays were undertaken using the following protocols in rats: nonsteroidal antiinflammatory drug (NSAID)-induced ulcer, ethanol-induced ulcer, stress-induced ulcer, and determination of gastric secretion using ligated pylorus. The treatment in the doses of 50, 250 and 500 mg/kg of R dracunculifolia essential oil significantly diminished the lesion index, the total lesion area and the percentage of lesions in comparison with both positive and negative control groups. With regard to the model of gastric secretion a reduction of gastric juice volume and total acidity was observed, as well as an increase in the gastric pH. No sign of toxicity was observed in the acute toxicity study. Considering the results, it is suggested that the essential oil of B. dracunculifolia could probably be a good therapeutic agent for the development of new phytotherapeutic medicine for the treatment of gastric ulcer. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Initially, the seeds of Baccharis dracunculifolia were collected from populations of 10 different regions, and the cultivation experiment was carried out in an experimental area of 1,800 m(2) by cultivating 100 individuals of each population. The essential oil analyses were performed on both GC-FID and GUMS, which allowed the identification of 14 compounds. The oil yield varied from 0.31% to 0.70% among populations and season. The major oxygenated sesquiterpenes in the cultivated experiment were (E)-nerolidol (32%) and spathulenol (17%). The mean concentration in the plant of (E)-nerolidol was five times higher in March (136.53 mg/100 g of plant) than it was in July (25.03 mg/100 g of plant). The mean concentration of spathulenol increased about three fold from July (16.25 mg/100 g of plant) to April (47.50 mg/100 g of plant).
Resumo:
7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorporate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.
Resumo:
The aim of this study was to investigate the effect of chronic treatment with C. multijuga oil on Ehrlich tumor evolution. C multijuga was fractionated in a KOH impregnated silica gel column chromatography to give three distinct fractions, i.e., hexanic, chloroformic, and methanolic, mainly composed by hydrocarbon sesquiterpenes, oxygenated sesquiterpenes and acidic diterpenes, respectively. Results demonstrated that the C multijuga oil, the hexanic, and chloroformic fractions did not develop toxic effects. The oil, hexanic and chloroformic fractions (doses varying between 100 and 200 mg/kg) showed antineoplasic properties against Ehrlich ascitic tumor (EAT) and solid tumor during 10 consecutive days of treatment inhibiting ascitic tumor cell number, reverting medulla and blood cell counts to values similar to control group, and inhibiting the increase on several inflammatory mediators (total protein, PGE(2), nitric oxide, and TNF) on ascitic fluid. The treatment also inhibited the increase in paw volume on tumor-inoculated mice. In conclusion, C. multijugo as well as its fractions demonstrated antineoplasic effect even after oral administration confirming its use by traditional medicine. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Pt monolayer electrocatalysts for O-2 reduction: PdCo/C substrate-induced activity in alkaline media
Resumo:
We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle`s surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O-2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O-2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate.
Resumo:
This work investigates the effects of carbon-supported Pt, Pt-Ru, Pt-Rh and Pt-Ru-Rh alloy electrocatalysts oil the yields of CO2 and acetic acid as electro-oxidation products of ethanol. Electronic and structural features of these metal alloys were studied by in situ X-ray absorption spectroscopy (XAS). The electrochemical activity was investigated by polarization experiments and the reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR). Electrochemical stripping of CO. which is one of the adsorbed intermediates, presented a faster oxidation kinetics on the Pt-Ru electrocatalyst, and similar rates of reaction on Pt-Rh and Pt. The electrochemical current of ethanol oxidation showed a higher value and the onset potential was less positive oil Pt-Ru. However, in situ FTIR spectra evidenced that the CO2/acetic acid ratio is higher for the materials with Rh, mainly at lower potentials. These results indicate that the Ru atoms act mainly by providing oxygenated species for the oxidation of ethanol intermediates, and point out ail important role of Rh on the C-C bond dissociation. (C) 2007 Elsevier Ltd. All rights reserved.