51 resultados para Nonisothermal curing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This in vitro study evaluated the cytotoxicity of an experimental restorative composite resin subjected to different light-curing regimens. METHODS: Forty round-shaped specimens were prepared and randomly assigned to four experimental groups (n=10), as follows: in Group 1, no light-curing; in Groups 2, 3 and 4, the composite resin specimens were light-cured for 20, 40 or 60 s, respectively. In Group 5, filter paper discs soaked in 5 µL PBS were used as negative controls. The resin specimens and paper discs were placed in wells of 24-well plates in which the odontoblast-like cells MDPC-23 (30,000 cells/cm²) were plated and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). The data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: In G1, cell metabolism decreased by 86.2%, indicating a severe cytotoxicity of the non-light-cured composite resin. On the other hand, cell metabolism decreased by only 13.3% and 13.5% in G2 and G3, respectively. No cytotoxic effects were observed in G4 and G5. In G1, only a few round-shaped cells with short processes on their cytoplasmic membrane were observed. In the other experimental groups as well as in control group, a number of spindle-shaped cells with long cytoplasmic processes were found. CONCLUSION: Regardless of the photoactivation time used in the present investigation, the experimental composite resin presented mild to no toxic effects to the odontoblast-like MDPC-23 cells. However, intense cytotoxic effects occurred when no light-curing was performed.
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
The aim of the present study was to evaluate the influence of different photopolymerization (halogen, halogen soft-start and LED) systems on shear bond strength (SBS) and marginal microleakage of composite resin restorations. Forty Class V cavities (enamel and dentin margins) were prepared for microleakage assessment, and 160 enamel and dentin fragments were prepared for the SBS test, and divided into 4 groups. Kruskal-Wallis and Wilcoxon tests showed statistically significant difference in microleakage between the margins (p < 0.01) with incisal margins presenting the lowest values. Among the groups, it was observed that, only at the cervical margin, halogen soft-start photo polymerization presented statistically significant higher microleakage values. For SBS test, ANOVA showed no statistical difference (p > 0.05) neither between substrates nor among groups. It was concluded that Soft-Start technique with high intensity end-light influenced negatively the cervical marginal sealing, but the light-curing systems did not influence adhesion.
Resumo:
Purpose: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. Methods: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene`s test, one and three-way ANOVA, and Tukey HSD test (alpha= 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (P< 0.0001). Tetric Ceram was the softest material followed by Esthet-X and Filtek Z250 (P< 0.001). Only the restorative material had a significant effect on degree of conversion (P< 0.001): Esthet-X had the lowest degree of conversion followed by Filtek Z250 and Tetric Ceram. Curing mode (P= 0.007) and material (P< 0.001) had significant effect on wear. Higher wear resulted from the pulse-delay curing mode when compared to continuous curing, and Filtek Z250 showed the lowest wear followed by Esthet-X and Tetric Ceram. (Am J Dent 2011;24:115-118).
Resumo:
Objectives. The purpose of this study was to evaluate how curing protocol affects the extent of polymerization of dual-cured resin cements. Methods. Four commercial resin cements were used (DuoLink, Panavia F 2.0, Variolink II and Enforce). The extent of polymerization of the resin cements cured under different conditions was measured using a (1)H Stray-Field MRI method, which also enabled to probe molecular mobility in the kHz frequency range. Results. Resin cements show well distinct behaviours concerning chemical cure. Immediate photo-activation appears to be the best choice for higher filler loaded resin cements (Panavia F 2.0 and Variolink). A photo-activation delay (5 min) did not induce any significant difference in the extent of polymerization of all cements. Significance. The extent of polymerization of dual-cured resin cements considerably changed among products under various curing protocols. Clinicians should optimize the materials choice taking into account the curing characteristics of the cements. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction: This study evaluated the bond strength of translucent fiber posts to experimentally weakened radicular dentin restored with composite resin and polymerized with different light-exposure time. Methods: Roots of 60 maxillary incisors were used. Twenty-four hours after obturation, the filling materials of root canals were removed to a depth of 12 mm, and 4 groups were randomly formed. In 3 groups, root dentin was flared to produce a space between fiber post and canal walls. In the control group, the roots were not experimentally weakened. The flared roots were bulk restored with composite resin, which was light-activated through the translucent post for 40, 80, or 120 seconds. Posts were cemented, and after 24 hours, all roots were sectioned transversely in the coronal, middle, and apical regions, producing 1-mm-thick slices. Push-out test was performed, and failure modes were observed. Results The quantitative analysis showed significant statistical difference only among groups (P <.001). Comparing the weakened/restored groups, composite light-exposure time did not influence the results. Overall, adhesive failures occurred more frequently than other types of failures. Cohesive failures occurred only in the weakened/restored roots. Conclusions Intracanal root restoration with composite resin and translucent fiber posts provided similar or higher bond strength to dentin than the control group, regardless of the light-exposure time used for polymerization. (J Endod 2009;35:1034-1039)
Resumo:
Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm(2)), Jet Lite 4000 Plus (1230mW/cm(2)), and Ultralume Led 5 (790 mW/cm(2)) and immersion media were artificial saliva, Coke(R), tea and coffee, totaling 12 experimental groups. Specimens (10 mm X 2 mm) were immersed in each respective Solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37 degrees C +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon. potassium and phosphorus. For Coke(R), excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke(R) affected material`s surface more than did the other tested drinks. Microsc. Res. Tech. 73:176-181, 2010. (c) 2009 Wiley-Liss Inc.
Resumo:
We discuss the basic hydrodynamics that determines the density structure of the disks around hot stars. Observational evidence supports the idea that these disks are Keplerian (rotationally supported) gaseous disks. A popular scenario in the literature, which naturally leads to the formation of Keplerian disks, is the viscous decretion model. According to this scenario, the disks are hydrostatically supported in the vertical direction, while the radial structure is governed by the viscous transport. This suggests that the temperature is one primary factor that governs the disk density structure. In a previous study we demonstrated, using three-dimensional non-LTE Monte Carlo simulations, that viscous Keplerian disks can be highly nonisothermal. In this paper we build on our previous work and solve the full problem of the steady state nonisothermal viscous diffusion and vertical hydrostatic equilibrium. We find that the self-consistent solution departs significantly from the analytic isothermal density, with potentially large effects on the emergent spectrum. This implies that nonisothermal disk models must be used for a detailed modeling of Be star disks.
Resumo:
The purpose of this study was to evaluate the effect of pre-heating resin composite photo-cured with light-curing units (LCU) by FT-IR. Twenty specimens were made in a metallic mold (4 mm diameter x 2 mm thick) from composite resin-Tetric Ceram (R) (Ivoclar/Vivadent) at room temperature (25 degrees C) and pre heated to 37, 54, and 60 degrees C. The specimens were cured with halogen curing light (QTH) and light emitted by diodes (LED) during 40 s. Then, the specimens were pulverized, pressed with KBr and analyzed with FT-IR. The data were submitted to statistical analysis of variance and Kruskal-Wallis test. Study data showed no statistically significant difference to the degree of conversion for the different light curing units (QTH and LED) (p > 0.05). With the increase of temperature there was significant increase in the degree of conversion (p < 0.05). In this study were not found evidence that the light curing unit and temperature influenced the degree of conversion.
Resumo:
The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60A degrees C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.
Resumo:
The purpose of this study was to evaluate the temperature increase during the polymerization process through the use of three different light-curing units with different irradiation times. One argon laser (Innova, Coherent), one halogen (Optilight 501, Demetron), and one blue LED (LEC 1000, MM Optics) LCU with 500 mW/cm(2) during 5, 10, 20, 30, 40, 50, and 60 s of irradiation times were used in this study. The composite resin used was a microhybrid Filtek Z-250 (3M/ESPE) at color A(2). The samples were made in a metallic mold 2 mm in thickness and 4 mm in diameter and previously light-cured during 40 s. A thermocouple (Model 120-202 EAJ, Fenwal Electronic, Milford, MA, USA) was introduced in the composite resin to measure the temperature increase during the curing process. The highest temperature increase was recorded with a Curing Light 2500 halogen LCU (5 and 31 degrees C after 5 and 60 s, respectively), while the lowest temperature increase was recorded for the Innova LCU based on an argon laser (2 and 11 degrees C after 5 and 60 s, respectively). The temperature recorded for LCU based on a blue LED was 3 and 22 degrees C after 5 and 60 s, respectively. There was a quantifiable amount of heat generated during the visible light curing of a composite resin. The amount of heat generated was influenced by the characteristics of the light-curing units used and the irradiation times.
Resumo:
The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm(2), respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey`s test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.
Resumo:
The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.