6 resultados para Metal-oxygen bonds

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (mu(3)-O)(mu-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever`s E(L) parameters. In fact, excellent linear correlations of In(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of organic hydroperoxides into peroxyl radicals is a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. This study shows that 5-(hydroperoxymethyl)uracil (5-HPMU), a thymine hydroperoxide within DNA, reacts with metal ions or HOCl, generating O(2) ((1)Delta(g)). Spectroscopic evidence for generation of O(2) ((1)Delta(g)) was obtained by measuring (i) the bimolecular decay, (ii) the monomolecular decay, and (iii) the observation of D(2)O enhancement of O(2) ((1)Delta(g)) production and the quenching effect of NaN(3). Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by the direct characterization of the near-infrared light emission. For the sake of comparison, O(2) ((1)Delta(g)) derived from the H(2)O(2)/HOCl system and from the thermolysis of the N,N`-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide endoperoxide was also monitored. More evidence of O(2) ((1)Delta(g)) generation was obtained by chemical trapping of O(2) ((1)Delta(g)) with anthracene-9,10-divinylsulfonate (AVS) and detection of the specific AVS endoperoxide by HPLC/MS/MS. The detection by HPLC/MS of 5-(hydroxymethyl)uracil and 5-formyluracil, two thymine oxidation products generated from the reaction of 5-HPMU and Ce(4+) ions, supports the Russell mechanism. These photoemission properties and chemical trapping clearly demonstrate that the decomposition of 5-HPMU generates O(2) ((1)Delta(g)) by the Russell mechanism and point to the involvement of O(2) ((1)Delta(g)) in thymidine hydroperoxide cytotoxicity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of molecular oxygen in the interactions of emeraldine base form of polyaniline (EB-PANI) with Fe(III) or Cu(II) ions in 1-methyl-2-pyrrolidinone (NMP) solutions has been investigated by UV-vis-NIR, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies. Through the set of spectroscopic results it was possible to rationalize the role Of O(2) and to construct a scheme of preferential routes occurring in the interaction of EB-PANI with Fe(III) or Cu(II). Solutions of 4.0 mmol L(-1) EB-PANI with 0.8, 2.0 and 20 mmol L(-1) Fe(III) or Cu(II) ions in NMP were investigated and the main observed reactions were EB-PANI oxidation to pernigraniline (PB-PANI) and EB-PANI doping process by pseudo-protonation, or by a two-step redox process. In the presence Of O(2), PB-PANI is observed in all Fe(III)/EB solutions and EB-PANI doping only occurs in solutions with high Fe(III) concentrations through pseudo-protonation. On the other hand, emeraldine salt (ES-PANI) is formed in all Fe(III)/EB solutions under N(2) atmosphere and, in this case, doping occurs both by the pseudo-protonation and two-step redox mechanisms. In all Cu(II)/EB solutions PB-PANI is formed both in the presence and absence of O(2), and only for solutions with high Cu(II) concentrations doping process occurs in a very low degree. The most important result from EPR spectra was providing evidence for redox steps. The determined Cu(II) signal areas under oxygen are higher than under N(2) and, further. the initial metal proportions (1:2:20) are maintained in these spectra, indicating that Cu(I) formed are re-oxidized by O(2) and. so, Cu(II) ions are being recycled. Consistently, for the solutions prepared under nitrogen, the corresponding areas and proportions in the spectra are much lower, confirming that a partial reduction of Cu(II) ions actually occurs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) was investigated on carbon-supported Pt-Co nanoparticle electrocatalysts with low Pt content in alkaline electrolyte. High resolution transmission electron microscopy, In situ X-ray absorption spectroscopy, and X-ray diffraction analysis evidenced large structural differences of the Pt-Co particles depending oil the route of the catalyst synthesis. It was demonstrated that although the Pt-Co materials contain low amounts of Pt, they show very good activities when the particles are formed by a Pt-rich shell and a Pt-Co core, which was obtained after submitting the electrocatalyst to a potential cycling in acid electrolyte. The high activity of this material was due to a major contribution from its higher surface area, as a result of the leaching of the Co atoms from the particle Surface. Furthermore, its high activity was ascribed to a minor contribution from the electronic interaction of the Pt atoms, at the particle surface, and the Co atoms located in the beneath layer, lowering the Pt cl-band center. As these electrocatalysts presented high activity for the ORR with low Pt content, the cost of the fuel cell cathodes could be lowered considerably. (c) 2009 Elsevier B.V. All rights reserved.